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Part 1. Saga 2- Generalising Connections Between the
Golden ratio and Fibonacci Numbers

1. CONTINUED FRACTIONS

1.1. Introduction. In this talk we looked at the idea of continued fractions.
We begin with a simple example
43
19
=2+

[
[\]
ol o

[
[(\©)
+
alg] = algl =~ +
I
(\&}
+

Thus, we see that even a simple fraction admits an interesting continued
fraction expansion. But the theory of continued fractions, as we shall
see provides us with some deep connections to number theory...

1.2. Application to Quadratics. Now consider a quadratic equa-
tion, for example 22 —5x — 1 = 0. Normally, to solve this we would use
the quadratic formula, but here we shall use the language of continued
fractions:

22 =5xr+1
T=03+—
T
1
x:5+5 T
=5+ L
= 1
5+5+ T

And so we’ve expressed the solution to this quadratic as an infinite
continued fraction! But now let us dive deeper and look at a connection
to the golden ratio. Recall that the golden ratio is the solution to the
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equation
0=+ 1.

And so we shall rearrange it:

1
p=1+—
¥
p=1+ o1
©
1
=1+
1+ 1+1i
Or in other notation, ¢ = [1;1,1,1,...]. It turns out that this contin-

ued fraction has a shocking connection to the Fibonacci numbers...

1.3. Two Shocking Connections.

Definition 1.1. Remember that the Fibonacci numbers F;, are defined
by the relation F,, = F,,_1 + F,,_5 with Fy = 0 and F; = 1. The first
few numbers are 0,1,1,2,3,5,8,13,21, ...

We observe that the convergents of the golden ratio is precisely the
ratio of the Fibonacci numbers. Let us the first few incidents:

1 1
L1t e I g
I+ I+

which becomes:
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As we can see, as we go through the convergents of the infinite con-
tinued fraction of ¢, we keep getting ratios of two Fibonacci numbers.
From this we can also infer the cool fact that as we take this process
to infinity, we have:

li Fn+l
11m

n—oo F,

=¥

We now look at a second shocking connection to number theory which
we observed- a connection to Pell numbers. First, we have to find
the continued fraction expansion for V2 + 1. This is the solution to
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(r —1)? = 2 and so we obtain:

2 =2r+1
1
rT=2+—
x
1
T =2+ i
2+;
1
rT=2+—7—
2+2_|__L

Now we look at how this connects to Pell numbers.

Definition 1.2. The Pell numbers are defined by P, = 2P, 1 + P,_»

with Py = 0, P, = 1. The first few Pell numbers are: 0,1, 2,5,12,29, 70, .. ..

The convergents of 2 = /2 + 1 are the following:

1 1 1
224,24 —— 24— ..
2

which become

2512 29

127571277
and again we see how the convergents of a certain special continued
fraction are deeply related to a famous sequence in number theory.
Fun fact: the number 1 + /2 is called the silver ratio. Next time we

shall look in more depth into the Fibonacci numbers and the golden
ratio.

2. ON THE FiBoNAcCI NUMBERS AND GOLDEN RATIO

2.1. Introduction. In the last talk we unveiled a shocking connection
between the continued fraction of the golden ratio and the Fibonacci
numbers (check it out if you haven’t seen the notes from that talk).
This week we delve deeper into the connection between the golden
ratio and the Fibonacci numbers, and uncover some deep results about
the Fibonacci numbers.

2.2. Deriving the General Formula for F,,. We will now use an
ingenious argument to find a general formula for the nth Fibonacci
numbers. First recall that the golden ratio satisfies p? = ¢ + 1 and so
we have:
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We also have that the other solution to the quadratic ¥ := 1 — ¢ =

_7} satisfies this too. Thus in general, any sequence that satisfies the

recursion U,, = U,_1 + U,,_» will be of the form:
U, = ap"™ + by"
since
U, = ap" + "
=a(" T+ ") F 0T+ ")
=Up-1+ Uy

as required. Now we apply this to F},. Since Fy = 0 and F} = 1, we
have that:

a+b=0
ap+by =1
And once the algebra is done, you have: a = \/ig, b = \’/—é and so we
have:
Pt — (=)™
1 F=—"7
(1) i

(using ¢ = — ).

2.3. Developing a Test For Fibonacci Numbers. Using the equa-
tion we derived in the previous section, we can develop a test to see
if a random integer x is a Fibonacci number, meaning you don’t have
to go through all of the Fibonacci numbers to test it! First we must
prove a preliminary lemma:

Lemma 2.1. p" = ¢oF,, + F,,_4

Proof. We do this by induction which means we prove it for the first
case (n = 1) and then we assume that it is true for the nth case and
show that this implies that the statement is true for the (n+ 1)th case.
So let us proceed:
The base case: @' = ¢(1) + 0 which is clearly true.
The inductive step: Let us assume that " = ¢F,, + F,,_1. Then:
SOn-‘rl — 802Fn + SOFn—l
= SOFn+1 + Fn

as required. O
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Now we can go about making this test. Using 1 we have that:

\/an = 90n - (_90)771
P"V5E, = o™ — (=1)"
©*" — o"VB5F, — (-1)" =0
. VBE, +/5F24+4(—1)"
" = 5 ;

where the last step comes from the quadratic formula (if look closely,
it’s a quadratic of ¢"). Now using the lemma we derived before, we
have:

SOFn—i_anl:

VB E, +/5F2 + 4(—1)"
2

— 20F, + 2F, 1 = V/5F, + \/5F2 4+ 4(—1)"

22UV (1 4 VB)F, + 2F, ) = V5F, + \/5F2 + 4(—1)"
= F,+2F, 1 =+/bF?+4(-1)"
= (F, +2F, 1)> =5F>+4(-1)".

And here we are at the crux of the argument! Since the right hand side
is always a perfect square, we can say that x is a Fibonacci number iff

512 — 4 is a perfect square or 522 + 4 is a perfect square. Pretty nifty,
eh!

3. PELL NUMBERS, THE SILVER RATIO AND MORE
GENERALISATIONS

3.1. Introduction. This week we finish the saga on all that we've
been looking at in number theory for the last few weeks. And this will
hopefully be an exciting end!

3.2. Pell Numbers and The Silver Ratio. The silver ratio is de-
fined in a very similar way to the golden ratio. Whilst the golden ratio
is defined as the solution to 22 — 2 — 1 = 0, the silver ratio shall be
defined as the positive solution to 22 — 22z — 1 = 0. In other words,
the silver ratio is 1 + v/2. We can observe that the silver ratio enjoys
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a very similar continued fraction expansion to the golden ratio:
2> =21 —1=0
2 =2r+1

=24 —
2+—1—2+K

which looks exactly like the golden ratio, except for that one the 2s were
replaced with 1s (see the notes from that legendary talk last week for a
refresher). However, here the fun has just begun! Because recall that
last time we observed a connection between the golden ratio and the
Fibonacci numbers (which were defined with the recurrance relation
F, = F, 1+ F,_5.) So this time, the silver ratio will have a shocking
connection with the very similar Pell numbers which are defined by
P, =2P, 1+ P, (with Py = 0 and P, = 1). So the first few Pell
numbers would be: 0,1,2,5,12,29,70,.... Again there is a shocking
connection: the convergents of the silver ratio are the following:

1 1 1
2,24+ .24 —5.24+ ——,...
2 2+§ 2+2+_1
2
which become
2 5 12 29
1’2" 571277

Furthermore, just as we did with the Fibonacci numbers, we can now
use the silver ratio to get a formula for the nth Pell number. Because
we can simply multiply 22 = 2z + 1 by 2”2 on both sides, we have
that 2" = 22" + 2”2 and so since the solutions are z = 1 + /2, we
know the formula for the nth Pell number will be of the form
P, =a(l+v2)" +b(1 —V2)"

since

P, =a(l+v2)" +b(1—V2)"

=2a(1+V2)" 1 +2b(1 — V2)" 2+ a(1 +V2)" L +b(1 — V2)" 2

- 2Pn—1 + Pn—2

as required. So now we must find @ and b. We have set By = 0
and P; = 1, so we just plug these two values in and get simultaneous
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equations and then we should be fine and dandy. More specifically, we
get:

Py=a(1+vV2)"+b1-v2)"=a+b=0
Pr=a(l1+v2)+b(1—-+2)=1.

After you do the algebra, you get that a = ﬁi and b = # So we

obtain a glorious formula for the nth Pell number being:
(1+vV2)" = (1 —=V2)"
2v/2 '
So again we see that there is a connection between these special ra-
tios and some very nice sequences in number theory. Thus, as any

mathematician would seek to do, we generalised it and saw the full
story!

[\

P, =

3.3. The Maths Society Ratio. Yes, I know these are called the
metallic means, but we generalised it ourselves and the results agreed
with what mathematicians had inevitably already done so I called it
the maths society ratio: sue me! Anyway, remember that the quadratic
equations defining the golden and silver ratios ,respectively, were 2% —
x—1=0and 22 — 22 — 1 = 0. So naturally we then looked at
r? —nx —1 = 0, and called this the maths society ratio (which we

denoted § because it was Mithush’s favourite Greek letter). Anyway, let

us observe that §(= 2EY=+2 V;ﬂ“) enjoys a very similar continued fraction
expansion to the golden and silver ratios:

2 —nr—1=0

2 =nr+1

B e v
n
e

We now see how this links to the sequence M; = nM;_1 + M;_,, with
My = 0 and M; = 1. For example, when n = 3 the first few terms
would be: 0,1, 3,10, 33,109, .... And the convergents of the continued
fraction would be:

1
3,34+ 5,3+ ——,3+—7...
3 3+ 1 34
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which become
3 10 33 109
173710 337"
And in general the convergents of the maths society ratio for any n are

A — .
n+% n+ —

1
n,n+ —,n-+
n

which become
nn’+1 nn?+1)+n nnn*>+1)+n)+n?+1
R n(n?+1)+n
which is precisely just the first few terms of our sequence in a fraction.

The last thing we did was find a general formula for M;. Using the

same reasoning again it will be of the form M; = ad® 4 bd’, where 6 is
n—vaZii
2

PRI

. And again, doing the algebra on the simultaneous equations

a+b=0
ad+bd =1
yields a = \/néﬁ and b = \/%H and so our general formula is:
51’ o 51
M; = ———
n?+4

(fun exercise: check that this agrees with the formulae for the nth
Fibonacci and nth Pell number.)

3.4. Further Reading. Thank you to Saik for pointing out this link
which had some more amazing results on the metallic means- we barley
scratched the surface in this sagal!

Part 2. Saga 3- Transcendental Numbers

4. TRANSCENDENTAL NUMBERS ExX1ST- A LOoOK AT LIOUVILLE
NUMBERS

4.1. Introduction. Last time it was revealed that our next saga would
be a look into the world of transcendental numbers, which are numbers
that are not a root of any equation anx”+an,1x”_1+~ --+ag where a; €
Z. In this talk we establish the fact that these numbers exist by looking
at the first example that was discovered in 1844- the Liouville constant,
which is an example of a class of transcendental numbers known as
Liouville numbers
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4.2. Liouville Numbers The goal of this talk is to prove that the
number L =Y 7, 10n' is irrational. We do this in the following way:

(1) Prove that all Liouville numbers are transcendental
(2) Show that L is a Liouville number.

Sadly, the definition of a Liouville number is pretty technical.

Definition 4.1. A Liouville number « is a number such that for all
n € N, there exists a rational number (with b > 1) such that:

0< o= 3l <5
Proposition 4.1. If « is a Liouville number, then « is irrational.

Proof. Let us assume that « is a rational Liouville number %’. Then for
some rational number § # 1—” we have:

‘ ’ a pb —aq
oa— —| =|= — p———
qb
Now we pick a natural number n such that 2"~! > ¢. Then we have:
pb — aq 1 S 1
qb 2n=1p = pn

where the last inequality sign comes from the fact that b > 1. Thus
we have shown that for any § we try to choose, there will be an n € N
such that }a — %’ > bin which contradicts the assumption that o was a
Liouville number. Thus, all Liouville numbers are irrational. 0

Now that we have established that all Liouville numbers are irra-
tional, we can now move forward and try to prove that they are also
transcendental too.

Theorem 4.2. Liouville numbers are transcendental.

Proof. Let f(z) = apa™+a, 12" '+...ag and assume by contradiction
that f(« ) = 0. We now define a few things: M = maxp,_14+1) |f' ()],
A< {l, 5, |la—ai],...|a — apl} where f(o;) = 0,Vi < m. Then we
pick some r € N such that 2" > %. Since « is a Liouville number, we
have some 3 € Q such that:

1 1 A
2 - = < — < A.
2) 0 <o ’ b"+"_27"b"_b”<
Now, because ‘oz — —’ < A, we have that:

(1) $€la—1a+1]
(2) £(5) #0.
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Thus we can use the mean value theorem to say that there exists some
Ty € (a, %) such that

So we can say that:

(3) |f’<xo>r=|‘;’:%%)g" — |a-2

b

Now note that we have:

(G-

So finally we are done because now we plug this into 3 to obtain:
@, 1 A a

4 b1 > > — > ‘ — —‘ :

4) M M YT

But 2 and 4 imply that ‘a — %{ > ‘oz — %| which is a clear contradiction

so there could not have existed some f such that f(a) = 0, so « is

transcendental as required! O

n aia n n a,a”
a — .« ..
*T b

1 1
= b_n|bna0 + alabn_l + -+ Cln(ln| Z b_n

4.3. Liouville Constant. We now show that L = ) >~ ﬁ is a Li-
ouville number.

Proposition 4.3. L is a Liouville number.

Proof. Let us write L as " | o +> " . == Then this first part
can be collapsed into a single fraction of the form We shall pick

our b in the fraction % to be 10™. Then:

a =1 1 (<1 1
L —_ —‘ = —_— _— _— = —

n=1
where the last inequality comes from simply comparing the denomina-
tors of the fractions on the sums and observing that they are bigger in
the sum on the left and so we have shown that L satisfies the conditions
being a Liouville number and so L is transcendental! 0

a
10n! .

5. € AND T ARE TRANSCENDENTAL

I was lacking that week, so we just watched a YouTube video. The
notes are in this link: here


https://en.wikipedia.org/wiki/Mean_value_theorem
https://www.qedcat.com/notes/e%20+%20pi%20transcendental.pdf
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Part 3. Guest Talks

6. THE RIEMANN ZETA FUNCTION, OR, HOw TO WIN £1000000-
WREN SHAKESPEARE

6.1. On the Real Line. We begin by considering two related prob-
lems from the earlier days of maths. The first is the harmonic series:

1 1 1 1

This series was proved to equal oo by Nicole Oresme in 1350. The
second is the Basel problem:

1 n 1 n 1 n 1
1 4 9 16
This series has a finite value that is now quite well-known:
LN S P SO
1 4 9 16 6

This was proven, if very unrigorously, by Leonhard Euler, who is also
credited with the first use of the modern-day Riemann Zeta function,
which is a generalisation from both of these ideas:

[e.9]

1
C(s)=p_ —
n=1
This infinite series only produces a finite value in a traditional sense for
s > 1, as can be seen by comparison with the harmonic series - s < 1
means all the terms will be bigger than the harmonic series, so its
value will be greater than the harmonic series, which is infinite. Euler
also proved, again slightly unrigorously in some cases, two interesting
properties of the zeta function:

C(2n) =kr*™ kcQneN

1 1 1 1
) = T XT3 X 15 17

By contrast, very little is known about the zeta function on odd num-
bers - the most we know is that ((3) is irrational.

s> 1

6.2. Complex Numbers. The zeta function was most famously con-
sidered as a complex function by Bernhard Riemann, which is why it
bears his name today. It can be extended to a complex function for
Re(s) > 1 very easily. However, what if we want to define it for other
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numbers?

. 0 (_1>n71
Taking 7n(s) = g —
ns
n=1

We can show that ((s) = %, Re(s) > 1

However, n also converges for 0 < Re(s) < 1, giving us a handy way to
extend the zeta function to this region, which is exactly the region we
want to study.

The Riemann Hypothesis asserts that if ((s) = 0, then Re(s) = 3.
Initially discarded as a mere curiousity by Riemann himself, it became
increasingly apparent that RH implies a number of other things in var-
ious fields of maths. Notably, it implies a fairly regular distribution of

prime numbers.

So, how far have we gotten with proving it? We can prove there are
infinitely many zeroes of the form Re(s) = 3. We also know, if there
are zeroes with other real parts, they cannont be too close to 0 or 1
(how close depends on their exact location). The strongest result that
we currently have is that 40% of the zeroes are of the form Re(s) = 3.
Interestingly, the monetary prize is not for a resolution of the Rie-
mann Hypothesis one way or another, it’s for a proof (so if it was false,

whoever showed that would not be able to collect the prize).

7. INTRODUCTION TO TAYLOR SERIES- PRASAN PATEL

7.1. Introduction. In this talk we were introduced to the concept of
a Taylor series, which was named after English mathematician Brook
Taylor who was born in 1685 here in Edmonton! So we were blessed to
see the magic of Taylor series delivered in its hometown. The idea be-
hind Taylor series is to convert functions that are not polynomials into
“infinite polynomials”, so that they are easier to compute; a calculator
doesn’t actually know what e? is- it is just plugging in values into the
Taylor series to approximate it.

7.2. Example: e”. Our goal is to write ¢ in the form p(z) = ¢y +
1z + cox? + . ... To do this we shall look at the derivatives. It is well
known that %ez = e” and so when x = 0, the derivative will be 1, no



14 MATHS SOCIETY SPEAKERS

matter how many times we take the derivative. Thus we need:

Plugging this information in gives us that ¢y = 1, since all of the rest of
the terms vanish when plugging in 0 into the polynomial. Furthermore
p'(z) = ¢1 + 2o + 3czx? + ... so plugging in 0 into this and setting it
equal to one leaves us with ¢; = 1. Taking the second derivative leaves
us with 2¢y + 63z + 12¢42% 4 . .. and so, again, when z = 0 we are left
with just the ¢y term and so we have 2co =1 = ¢, = % In general,
we see that because of the power rule and the fact that when x = 0 all
higher terms cancel, we have that

and so since we want p™(0) = 1, we have that ¢, = % and so our
function actually looks like the following:

We observe on desmos how well this can approximate e®. The first
2 2 3
three terms are 1 + x + %, the first three terms are 1 +z + % + %
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FIGURE 1. The approximations get closer and closer!
(Red curve is )

The purple (really close) line is the first 5 terms of the polynomial,
the green (still pretty close) is the first 4 terms and so on. So really
your calculator is just adding up the first 10-15 terms of this polynomial
when you plug in e” for some z in your calculator. Pretty neat, eh.

7.3. Generalising This Process. Now, considering that this is maths
society, we want a general formula to do this process with any function
f (which isn’t a polynomial). Again, let us say that we want to write it
in the form p(z) = > 7, c,x". Then again we would take derivatives
and set them equal to the derivative of the original function, except we
need not take the derivative at 0, we can pick any point a (for example
if we were to do this process with In(x), we couldn’t pick x = 0 to take
our derivative on since it isn’t defined there). However, like in the e”
example, we want that when we take the nth derivative at a, all of the
higher terms cancel out so instead we shall write:

p(z) = co + ci(z — a) + oz — a)? chx—a

Now, just like last time we take the nth derivative of p(x) at a and we
find that:

p"(a) = nle,
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since we've set p™(a) = f™(a), we find that ¢, = p"n(!a) and so we

have:

n

o m)(g
f) = 3 T gy

which is called the Taylor series of f.
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