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What does it say?

The zeta function is defined as:

ζ(s) =
∞∑
n=1

1

ns
,<(s) > 1

The zeta function admits an analytic continuation to all of C (except
1). More precisely:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

The zeta function has trivial zeros at s = −2n because of the sin
factor.

RH asserts that any other zeros of the zeta function are of the form
1
2 + it.
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The Mertens Function

Of great importance to this video is a certain function called the
Mertens function:

M(n) =
n∑

k=1

µ(k)

where µ denotes the Mobius function.

The importance of this function lies in the rate of it’s growth,
connecting to to of the biggest number theory problems:

PNT ⇐⇒ |M(n)| < εn , ε > 0, n� 0.

RH ⇐⇒ |M(n)| < n
1
2+ε , ε > 0, n� 0

But perhaps the most incredible thing is that the Mertens function is,
up to a sign, the Euler characteristic of a special simplicial complex!
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Set up/ Motivation

Recall that:

µ(n) =

{
(−1)|P(n)| if n is squarefree

0 otherwise

Where P(n) is the set of prime factors of n.

The Euler characteristic of a simplicial complex is
∑

(−1)nkn where
kn denotes the number of n-simplices.

Our goal is to construct a simplicial complex that has an Euler
characteristic which is M(n) (up to sign) and then study it with
topological methods.
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Defining the simplicial complex

Defining:

∆n = {P(k) : k is squarefree and k ≤ n}

gives us the abstract simplicial complex we require.

Namely, M(n) = −χ(∆n), where χ is denoting the Euler
characteristic minus one.
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Betti Numbers

Betti numbers are a way of rewriting Euler characteristics as another
sum. More precisely:

χ(X ) =
∑
k≥0

(−1)kβk(X ).

The normal definition would be βk(X ) = rank Hk(X ), but since we
are dealing with a reduced version of the Euler characteristic, we
define βk(∆n) = rank H̃k(∆n).

Therefore, we have:

M(n) =
∞∑
k=0

(−1)k−1βk(∆n).

There is a nice, number-theoretic form for these Betti numbers in the
case of this complex.
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Setting up the nicer form for βk(∆n)

Definition

For x > 0, define:

σ(x) = #{squarefree integers in (0, x ]}
σodd(x) = #{odd, squarefree integers in (0, x ]}
σk(x) = #{squarefree integers in (0, x ] of weight k}
σoddk (x) = #{odd, squarefree integers in (0, x ] of weight k}

Where the weight of a number is the number of prime factors:
Ω(pe11 . . . penn ) = e1 + · · ·+ en and σeven/σevenk are defined analogously.

A classic approximation for this function is:

σk(x) ∼ x

log x

(log log x)k−1

(k − 1)!

which is the prime number theorem for k = 1.

Multiplication by 2 gives a bijection σeven
k (x) = σodd

k−1

(
x
2

)
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Back to the Betti Numbers

The reason I introduced these functions is because of the following result:

Theorem

βk(∆n) = σoddk+1(n)− σoddk

(n
2

)
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Cleaning up the result

Our goal is to get rid of the “odd” part of those σ functions, which we do
with the following result:

Theorem

σoddk (x) = σk(x)− σk−1
(
x
2

)
+ σk−2

(
x
4

)
− σk−3

(
x
8

)
+ . . .

σodd(x) = σ(x)− σ
(
x
2

)
+ σ

(
x
4

)
− σ

(
x
8

)
+ . . .

Proof.

We have that σevenk (x) = σoddk−1
(
x
2

)
, which means that:

σk(x)− σoddk−1

(x
2

)
= σoddk (x)

and applying this formula recursively gives the first result. Summation over
k gives the second.
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Motivation

Recall that our goal is to study the growth of M(n).

Therefore, studying asymptotic behaviour of βk(∆n) is logical.
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The Results:

I shall chose to prove only one of these results, but I will state all of them
to give a sense for the type of thing we are dealing with:

Theorem

1 As n→∞, we have:∑
k even

βk(∆n) ∼ n

π2
and

∑
k odd

βk(∆n) ∼ n

π2

2 βk(∆n) ∼ n
2 log n

(log log k)k

k! as n→∞
3
∑∞

k=0 βk(∆n) = 2n
π2 + O(nθ) as n→∞
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Proof of 1

Proof.

Let a(n) and b(n) be the first and second sums respectively. Then 2 and
PNT show that

a(n) + b(n)

n
→ 2

π2
and

a(n)− b(n)

n
=

M(n)

n
→ 0

so

2a(n)

n
→ 2

π2
=⇒ a(n)→ n

π2
.

The proof is analogous for b(n).
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Overview of what the results will do

This section is just a quick addendum of some purely number
theoretic results that one derives using facts about the Betti numbers
of ∆n

More precisely, the fact that they are completely determined by the σ
functions we defined earlier can help us to find certain bounds.

Namely, knowing the number of odd, squarefree integers of weight
k + 1 in the interval (0, n], one can obtain a lower bound for the
number of such integers of weight k in the interval (0, n2 ], using a
couple of preliminary definitions.
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Set up

Definition

Given n, k > 1, any integer n can be uniquely expressed as

n =

(
ak
k

)
+

(
ak−1
k − 1

)
+ · · ·+

(
ai
i

)
.

Then we define:

∂k−1(n)
def
=

(
ak

k − 1

)
+

(
ak−1
k − 2

)
+ · · ·+

(
ai

i − 1

)
,

and

∂k−1(n)
def
=

(
ak − 1
k − 1

)
+

(
ak−1 − 1
k − 2

)
+ · · ·+

(
ai − 1
i − 1

)
.
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The bounds

The final result I shall present comes in two parts:

Theorem

∂k
(
σoddk+1(n)

)
≤ σoddk

(
n
2

)
∂k
(
σodd2k+2(n) + σodd2k+1(n)

)
≤ σodd2k (n2 ) + σodd2k−1(n2 )
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What we did

We restated RH as a problem concerning the Euler characteristic of a
certain abstract simplicial complex.

We studied the asymptotic behaviour of the Betti numbers of ∆n,
which was important because M(n) is an alternating sum of those
Betti numbers.

We managed to get some nice bounds for the number of odd,
squarefree integers of weight k in the interval (0, n2 ], which is a
consequence of the work we did earlier, from some slightly messy
computations. This is a purely number theoretic result that we
managed to obtain using topological methods.
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Thanks

Thank you for watching!
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