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The General Slogan for Homotopy Groups of Spheres

The problem of computing πn(Sk) is a classic one in algebraic
topology. Essentially, what it does is studies how spheres can ”wrap
around each other”.

More precisely, it studies homotopy classes of maps Sn → Sk , relative
to basepoints.

In this talk, I shall talk about the intuition for lots of the basic
concepts relating to these homotopy groups.
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The Table for Homotopy Groups of Spheres

Figure: This is a table of some homotopy groups of spheres. As one can see, it is
a huge mess full of different patterns to explore.
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π1(S1) ∼= Z

The fundamental group of the circle can be visualised as wrapping a
rubber band around a gluestick.

You may twist the rubber band around once, twice, thrice and so forth

You may do the inverse of this by twisting the rubber band the other
way around.
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π1(S1) ∼= Z... the image:

Figure: These are the elements of π1(S1). Clearly, it is in correspondence with Z,
since all of these of these loops can be ”unwrapped” by twisting the other way
around. Furthermore, two twists of the circle are equivalent if they can be
adjusted to each other. The number of times one wraps around the circle is called
the winding number.
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π1(S2) ∼= 0

The fundamental group of the sphere can be visualised as a rubber
band on a frictionless globe.

This time, no matter how you place the rubber band on the globe, it
can be continuously deformed to a point.

This means that up to homotopy, every map S1 → S2 (which can be
visualised as the ”wrapping” process described above) is homotopic
to a point, so π1(S2) = 0
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π1(S2) ∼= 0... the image:

Figure: A homotopy, deforming the rubber band to a point.
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π2(S2) ∼= Z

The second homotopy group of the sphere can be visualised as
wrapping a football, with some very special wrapping paper.

The thing that is special about this wrapping football is that when
the inside of the wrapping paper touches itself, it dissolves.

One can wrap the football as many times as they would like-
corresponding to the positive branch of the integers. When the friend
receives it, he must dissolve each layer of wrapping paper, by
wrapping it inside out.
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π2(S2) ∼= Z... the image

Figure: These are the elements of π2(S2). Each new integer amount of times you
wrap, corresponds to each winding number.
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π2(S1) ∼= 0

It is hard to visualise why π2(S1) ∼= 0, so I shall just state what
π2(S1) ∼= 0 actually means.

The second homotopy group of the circle can be visualised as follows:
imagine you are now wrapping a ring.

This time when the friend receives it, he does not need to dissolve it.
In fact, it turns out that any way one wraps this ring, the friend can
always deform the wrapping paper, without dissolving or cutting it.
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π2(S1) ∼= 0... the image

Figure: It turns out that up to homotopy, all wrappings of the sphere around the
circle can be shrunk to a point as seen in the image
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Warm up: using the same technique to visualise S2

First, we want to see how we can see the 2-sphere (just the regular
sphere) from the circle. Recall that the equation for the sphere is
x2 + y2 + z2 = 1. Let us think of the third dimension z as time and
refer to it as t. The expression x2 + y2 + t2 = 1 can be re-arranged
as: x2 + y2 = 1− t2.

So really the sphere is just a family of spheres of radius
√

1− t2 (by
the equation for a circle) as t varies from −1 to 1, where at those
points the relation becomes x2 + y2 = 0 which is just a point.
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The image

Figure: The sphere, viewed as a family of circles glued in the third dimension.
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Warm up: using the same technique to visualise S1

Similar to the method outline above, we can see the circle as just a
family of 0-spheres glued together in two dimensions. Recall the
equation for a circle: x2 + y2 = 1.

Letting our second dimension y be time, we can rearrange it to be
x =
√

1− t2. Note that when t = 0, this set is precisely x = ±1, the
0-sphere. As t (remember this is just the y -axis) gets closer to 1, our
value |x | gets smaller until t = ±1, where |x | = 0. Overall, all of
these co-ordinates (x , t) will look exactly like a circle!
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The image

Figure: The circle, viewed as a family of 0-spheres glued together in a second
dimension.
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Visualising S3 in this way

Now comes the fun part- visualising a family of 2-spheres (regular
spheres) glued together in a fourth dimension to make something
called the 3-sphere (or hypersphere). In the end, we get something
that looks amazingly cool:

Figure: The 4 dimensional sphere! Try to see how this can be seen as a family of
spheres glued together.
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Introduction

Historically, the problem of computing homotopy groups of spheres was
suspected to be very simple with the prevailing opinion being that
homotopy groups of spheres would be analogous to their homology groups,
which were easily computed. but mathematician Heinz Hopf found a
counter example via his famous Hopf fibration1 S3 → S2, which can be
thought of as a way of somehow “wrapping” the 3-sphere around the
2-sphere.

1The Hopf fibration also finds applications in physics, where it models a particle
which carries magnetic charge.
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What happens to circles?

We shall look at this map by slowly unravelling what is happening to
different components of the 3 sphere.

Firstly, it will map circles in a 3-sphere to points on the sphere. The
points on the equator are mapped to a torus that one can flip upside
down:
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What happens on multiple circles?

Here are how three circles on a 2-sphere correspond via the Hopf map
to three linked tori in the 3-sphere:
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When the fibers form an arc

Now we see what happens when the fibers form an arc. They actually
correspond to what’s known as a Hopf link which is an annulus whose
boundary circles are linked. They look like this:

Gregor Sanfey Homotopy Groups of Spheres April 2021 23 / 38



The typical energy... when the fibers form a lot of links

When we have the fibers form a lot of links, we get the typical image for
the Hopf fibration, in all of its glory:
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Technical advantages of the Hopf fibration and other
technical remarks
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Questions...

I shall pause here for any questions.
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Introduction

The idea behind stable homotopy groups of spheres is that the
homotopy groups do indeed stabilise. This means that if we keep
going further and further up in dimensions, the homotopy groups will
stabilise and eventually settle down completely. We shall look at the
example of π4(S3) later.

More precisely, there is a range when πn+k(Sn) is independent of n.

This theorem is a special case of the so called Freudenthal suspension
theorem.
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The Freudenthal Suspension for spheres

Theorem

There is a homomorphism called the “suspension homomorphism”

πn+k(Sn)
Σ−→ πn+k+1(Sn+1)

which is an isomorphism if n ≥ k + 2 and a surjection when n = k + 1

Example

When k = 1, we get the following chain of isomorphisms:

π4(S3) ∼= π5(S4) ∼= π6(S5) ∼= . . .
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Remarks

The range when these homotopy groups stabilise is called the stable
range.

These groups are more well studied than the unstable ones because
they are more well behaved.

To finish, I shall try to convince you that it is the case that
π4(S3) ∼= Z2 (which can be proven rigorously using spectral
sequences).
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Warm up: intuition for π3(S2) ∼= Z

Firstly, we shall give intuition for why π3(S2) ∼= Z, before moving up
a dimension and investigating π4(S3).

The way we can inuitively think about π3(S2) is via something called
the “Hopf invariant”, that keeps track of the homotopy class of a
map S3 → S2. I sketch a way to compute it here.

Most points p in S2 have the property that the points x in S3 with
f (x) = p form a bunch of knots in S3, which we can think of as a
“link”. When we pick two different points in S2 with that property,
the links determine an integer called the Hopf invariant.

We can count the integer amount of times that these links overlap
(with signs depending on whether the links cross over or under each
other). This number turns out not to depend on how we picked the
two points; it only depends on the homotopy class of f . This is the
Hopf invariant and it is bijection with π3(S2) (that is, π3(S2) ∼= Z).

The punchline is that we can undo links in higher dimensions!
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Moving up a dimension- π4(S3) ∼= Z2

As stated in the last slide, links can be undone in 4+ dimensions. So if we
compute the Hopf invariant of a map S4 → S3 in the same way, then a
link can be undone, so the “Hopf invariant” defined the slide before is only
defined mod 2 (has two elements).

The same reasoning works for all πn+1(Sn) (provided that n ≥ 3)

This example demonstrates how stable phenomona occur in these
situations, because the homotopy groups will eventually agree as we
climb the dimensions.
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Spectral Sequences

Spectral sequences are a modern (and extremely powerful) algebraic
gadget that has been used with great effect to yield lots of homotopy
groups of spheres.

Spectral sequences originally were created to compute homology
groups by “approximating them with similar spaces”, but connections
between homotopy and homology is a classic thing to see in algebraic
topology so it is no surprise that spectral sequences appear in this
setting too.
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Bordism

Thinking more geometrically, we have some nice constructions coming
from (co)bordism that were mainly developed by Thom and Pontryagin.

Very precisely, the story goes as follows:

In 1950, Pontryagin showed that nth framed cobordism group of
smooth manifolds was equal to nth stable homotopy group of
spheres- limk→∞ πn+k(Sn) ∼= Ωframed

n .

Soon after, Thom came along and generalised this result using Thom
spaces with somehing known as the Thom-Pontryagin construction.
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spheres- limk→∞ πn+k(Sn) ∼= Ωframed

n .

Soon after, Thom came along and generalised this result using Thom
spaces with somehing known as the Thom-Pontryagin construction.
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The J-homomorphism

The J-homomorphism is a morphism πi (O(n))→ πi+n(Sn). It can be
defined in a few different ways (all equivalent of course).

The J-homomorphism can be thought of as comparing homotopy
groups of spheres to others, and getting certain relationships to
exploit.

Adams’ approach using something called K-theory took the lead in
determining the image of the J-homomorphism and has now given us
information about homotopy groups of spheres.
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What good is all this?

I don’t know much physics, but there is an interesting discussion on MO
which answers the question nicely here.
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https://mathoverflow.net/questions/22837/what-are-the-uses-of-the-homotopy-groups-of-spheres


Thanks

Thanks for watching! Questions?
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