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1 Introduction

1.1 Motivation

Definition 1.1. Recall that, given a space X, we may form the cohomology
ring of X:

H(X)=@H"(X). (1)

n

The cohomology ring is graded, by the cap product, which means that there is
a product:

—: H"(X) x H™(X) — H""™(X). (2)
Furthermore, the cup product is commutative up to a sign: xy = (—1)|$”y‘ya:.

Our goal is to compute this cohomology ring. That is not an easy task. The
idea of spectral sequences is to use a lot of easier bits and pieces to compute
and then put them all together to obtain H*(X). To see what I mean, consider
the following long exact sequence induced by a CW-pair A < X:

c HM(X) — H™(A) « HM(X,A) & H"Y(X) « ... (3)

But now, say that we can introduce a filtration of X. So a nice sequence of
inclusions

A= A; = X. (4)
This will now give you two long exact sequences:
o H™(Ag) + H™(Ay) « H"(Ag, A1) & H" M (Ag) « ... (5)
and
o HM(X) = H™(Ay) « HY(X, A1) & H"Y(X) ... (6)

The idea now, is that the cohomology of A; and Ag should be easier to compute
than H*(X). After doing the computation of them, we can hope to move up to
the cohomology of X. However, we need not stop at 2 exact sequences! Let’s
say that we can introduce a filration which looks like this:

This now gives rise to many long exact sequences, each approximating the co-
homology of X. We can then try to use all of the data we have collected to
move up to the cohomology of X. This data comes together to make a spectral
sequence.



1.2 Precise Definitions

Definition 1.2. A spectral sequence {E?'?,d,.} consists of the following infor-
mation:

e For all p,g,r > 0, EP9 is an abelian group.
e The differentials d,. : EP9 — EPTT4=m+1 gatisfy d? = 0

e The homology of the rth page is the r 4+ 1th page. That is: H(EP%;d,) =

P,q
EPY,.

We may visualise some of the pages, where the dots are groups:

Figure 1: The F; page- the differentials go across the p-axis by one and don’t
go up the g axis since —1+1=10

TSI

Figure 2: This is the Fs page; each dot is a group, and each arrow is a differential
ds, moving across the p axis by 2 and down the ¢ axis by 1.



Figure 3: The Fs5 page-hopefully you see the pattern now.

It is often the case that E; is a well known complex, so normally we state
the F5 page when starting, being the standard cohomology of Fj.

Definition 1.3. If there is some r > 0 such that all of the differentials d,. are
zero for ' > r, we say that

E, = E., (8)
since
E..1.=H(E,)=E,. (9)

Furthermore, if there is a graded object H, such that summing along the diag-
onals gives H,;

H,=  E°. (10)
ptg=n

If this happens, we say that the spectral sequence converges to H, and write:

EPY — H, (11)
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H, H, H,

Figure 4: Summing along the diagonals p+¢ =1, p+q¢ =2, p+ g = 3 yields
Hy, Hy, Hs respectively, along the E, page.

Part 1
Spectral Sequences in Topology

2 Bockstein Spectral Sequence

2.1 Exact Couples

We begin this section by introducing the notion of an exact couple in order
to set up the Bockstein spectral sequence, which is a setting in which spectral
sequences arise very naturally.

Definition 2.1. An ezact couple, (D, E,i,j,k) consists of two modules, along
with three morphisms ¢ : D — D, j: D — FE and k : E — D such that:

i

D—D

‘ (12)
N,

is exact at each vertex.

Note that if we set d = jk : E — FE it becomes a differential, since d?> =
Jkjk = j(kj)k = 0. We now define the derived couple as follows:

Definition 2.2. Given an exact couple, of the form in 12, we define a new exact
couple (D', E’, 4, j', k') with:

e D' =14(D)
e £/ =H,(F;d)



o i =i|p
o J(i@) = j(x) + jh(E) = [j(2)
o K([y]) = k(y)
Proposition 2.1. The derived couple is exact
Proof. Exercise O

Because of this, we may do this again, taking the derived couple again,
leaving us with a lot of derived couples: (D", E" i", j" k™).

o (D' EY ' ' k") = (D, E,i,j,k)
o (D% E?%i? 2, k%) = (D', E',i',j', k") and so forth...
e The differential d is given by d" = j"k"

turns (E7,d") into a spectral sequence!

2.2 The Bockstein Spectral Sequence Construction

Now, we may construct the Bockstein specral sequence.

3 Serre Spectral Sequence
3.1 H*(S?)
Proposition 3.1.

H*(8%) = Z[z]/(2%), |o] = 3 (13)

Proof. ‘ Step 1: Determine the nontrivial elements on the Fs page and differentials. ‘

For S2, this is simple via the Hopf fibration:
St 83— 82 (14)

Now that we know which fiber bundle we’re working with, we may determine
the E5 page. More precisely:

Z ifp=0,2andqg=0,1

. (15)
0  otherwise

BY" = HP(S% HY(S")) = {

Now time for some pictures:



° ° ° °
Z ° 7 °
7 ° 7 °

Figure 5: Every differential on the F; page is trivial

° ° . ) ° ° .
° o ° ° ° ° °
Z ) Z ° ° . .
Z ° Z o . ° .

Figure 7: For r > 3, all of the differentials d,- will have too high of a degree to
be nontrivial. Therefore F3 = E.

Next we show that the differential dy : EY"' — E3°. is an isomorphism,



given that:

we have that dz(1) = +£1. Soif z € Eg’l is a generator, then ds(x) € Eg’o is
also a generator. Furthermore, setting y = da(z), we have that:

e x generates Eg’l
e y generates ES’O
e xy generates ES o1
o y"=0,n2>2
e " =0,n>2

I claim that dy is an isomorphism. Show that d, is an isomorphism:

O
3.2 H*(CP>)
Theorem 3.2. H*(CP*>) = Z[z], |z| = 2.
Proof. We will use the fiber bundle:
St — 5 — CP> (16)
for the setup of the SSS. We see which terms on the E5 page are nontrivial:
HP(CP> if g=0,1
EPT = HP(CIPOO);Hq(Sl)) _ (CP>) ifgq O-a (17)
0 otherwise

Picture time:
insert da pic

Since the spectral sequence converges to H*(S°°) = 0, the only nontrivial term
on the E.-page will be E20. We will now figure out some generators, and try
to use induction to compute every H™(CP>). The terms we shall observe are:

1,0
o I,

0,1
o I,

2,0
o I,



2,1
° E2’

Firstly: Ey°. For each r > 2, we have it that d, : Ey° — E}™™ " go into a
trivial group, and d, : Ey™" — EQl’O go from a trivial group. This implies that
E° = ELY which, since EL? # E%0. is trivial. The only differential going into
E;Y is

dy: ES" — EJ°. (18)

Similarly dy is the only nontrivial differential going into E22,0~ We would like to
show that ds is an isomorphism. Since

. 0,1 2,0
kerd, : 5" — E5

0=E% =B = . 19
o P imdy: By 2 o EOY (19)

In order to make this true, ker dy = 0, so dy is an injection. Similarly,

20
0=E%"=F}"= 2 20
o P imdy : EQY — E2O (20
so im dy = E22 ¥ 50 it must be a surjection. Therefore

E’ =g =17, (21)

Similarly, one can show that 3"~ " H27=1(CP>) 2 0 and E;™° = H?"(CP>)
Z. Now pick a generator = for Ey''. Then:

o dy(z) =y € E5° is a generator.
e 1y € Eg’l is a generator.
e dy(xy) generates E,°.

However, remember that ds is multiplicative in the sense that:
do(zy) = d(z)y +d(y)r = y* + 0 = y*. (22)

So y? generates E;L 0= g 4(CP*°). Continuing this process gives the following
information:

° H2n—1((CIP>oo) =0
e H?"(CP>) = Z, generated by y".

So overall:

| H*(CP) = Z[a], |2| = 2| (23)




3.3 H*(QS)
Proposition 3.3.

H*(Q8%) = T[], |z| =2 (24)
Proof. The fiber bundle we shall use is:

053 — PS? ~ % — 83, (25)
Remarks:

e We know the cohomology of S3 and PS33, so we can go ahead and use
the Serre spectral sequence.

e Since PS® ~ x, we have it that H*(PS3) = 0, so the only nontrivial
element of the E., page is E%?. This is because our spectral sequence will
converge to H*(PS3).

O
We shall now take a closer look at the Ey page:
H1(QS3 if p=
Eg-,q — HP(sS;Hq(QSS)) _ ( S ) op 973 (26)
0 otherwise
So the only differential that we care about is ds.
3.4 H*(SU(n))
Proposition 3.4.
H*(SU(n)) = Alzs, ... Top—1] (27)

where |z,| =n

Proof. We shall use induction. Thankfully, the base case is very simple since
when n = 2, we have: SU(2) 2 S3 so

H*(SU(2)) = H*(S%) 2 Als] (28)

Now assume that H*(SU(n — 1)) = Alzs, @5, . . . 2p—3]. This means that in the
fiber bundle:

SU(n—1) — SU(n) — S* 1 (29)

we know the cohomology of SU(n — 1) and S$?"~!, so we are in position to use
the Serre spectral sequence. Let’s take a look at the Fy page:

HY(SU(n—1)) ifp=02n—1

. (30)
0 otherwise

EY = HP(S*" " HY(SU(n— 1)) = {

10



The argument for this proof is to show that the spectral sequence will collapse
at the Fs page. You might be thinking that this can’t be the case, since the
Oth and (2n — 1)th columns are interesting, however it turns out that all of
the differentials ds,—1 will be trivial. Since the differentials are all of bidegree
(2n — 1,—2n — 2), it’s clear that dap,—1(a;) = 0. The only ones left for the
killing are the groups generated by multiple of these generators. However, the
multiplicative structure takes care of that:

dgn,l(aian) = dgn,l(ai)an + dgn,l(an)ai = 0 + 0 = 0 (31)

So clearly, all the differentials on the Fs,_1 page are trivial, and Ey = F,. So
now, summing along the diagonals of the F5 page leaves us with

H*(SU(TL)) gA[Q]‘g,,...Z‘Qn_l] (32)

11



15 Zasasaz Zasasarag

12 Zagaz Zasazag

11

10 Zazazy Zazazag

9

8 Zazazag
u

7 Zazag

H3(SU(5)) H(SU(5)) H3(SU(5)) H'(SU(5)) H™(SU(5))

Figure 8: Deducing the cohomology of SU(5) by summing along the diagonals
of the Fs page, assuming H*(SU(4)) = Alzs, ... x7]

3.5 (59

We now consider some applications to homotopy theory. To do so we require a
little bit more set up:

Theorem 3.5. If X is simply connected, and Hi(X) =0 for 0 < k < n, then
there is a map inducing an isomorphism on homotopy groups:

F— X — K(r,(X),n), (33)

where F' is the homotopy fiber such that

o ifk<n
7”(F)_{m()() ifk>n (34)

Corollary 3.6 (The Upshot). By the Hurewicz theorem, we see that

Hi1(F) = mn g1 (F) = T (X)) (35)

12




Hence, if we get such a fiber bundle, we can apply our findings to homotopy
theory! A brilliant example of this is computing the first stable stem, aka 4 (S?).

Our set up will be of the form:
F — 8% - K(7.3)
which, up to homotopy, gives us a fiber bundle:

OK(Z,3) ~ K(Z,2) = CP>® — F — S°.

(36)

(37)

Since we know the cohomology of CP> and S3, we get something that we may
compute with the Serre spectral sequence. Our plan, roughly will look like this:

e Figure out the nontrivial terms in the Ey page
e Figure out where the spectral sequence collapses.

e Compute the differentials by looking at the generators.

to H*(F)

e Pass to universal coefficients to obtain results related to H,(F)

e Use the setup from above to get: Hy(F) = my(F) =2 my(S3).
First, see that the Fy page looks like:

HY(CP>®) ifp=0,3

EST = HP(S% HY(CP™)) =
2 ( ( ) {O otherwise

Z if q is even
Furthermore, since H?(CP>) = q _
0  otherwise
we see that the only nontrivial terms in the Es page are:
° E(2),2n
° E’23,2n

or, pictorially,

13

Collect together the terms on the F, page, to obtain some results related



5 G

4 Z T Z

3 d

2 Z__ T Z

1 d3

0 z T Z
0 1 2 3

Figure 9: The only nontrivial differentials are dz : E?? — EPT3972 since both
of the degrees work out. Furthermore, we conclude that Fy = F.

Now we pick some generators, in order to make computing the differentials
easier:

o Let u e E5° generate H3(S%).

e Now let 2 € Ey” generate H2(CP™).
We immediately see:

e 1" generates E§’2n.

o u" =0,n>0.
3.2n

e ux™ generates E;

Pictorially this can be visualised as follows:

14



6 Z X 7

5 Xz /xx
4 7 Xu A

3 X uxd X
Xu

2 Z uxz/ 4

1 Xx uxr Xx

Figure 10: Multiplication by = goes up the ladder, whereas multiplication by u
goes across.

We now compute the differential on the generators:

Proposition 3.7. We have
ds(z) = tu. (39)

3,2(n—1
0,2n4>E3, (n—1)

Now, since d3 : Ey is a derivation, we have that

ds(z™) = +nuz" " . (40)
With this information, we can finally talk about the E4y = E., page! More
precisely:

ker(ds: ES 2" ES?(" 1)

im(dg: Eg 22"t 5 p0-2ny

o EY?" = H(EY?™d3) = Clearly, since ds is an

S 0,2
injection, E,"*" = 0.

o F32n=1) _ ker(dg: E22(" D, g82(n—2)
4 im(d3:Eg’z"ﬂEg’z("fl))

the map will be everything (i.e. Z). Furthermore, since the image of d3 is

generated by +nuz” !, it acts somewhat like multiplication by n. Hence

we get

. Since Eg’g("_g) = 0, the kernel of

ER0 D g (41)

15



Figure 11: The E, page
When we pick n = 2, we have that:
EY? = HY(F) =17, (42)

since the spectral sequence converges to H*(F). Now we know H®(F) = Z,.
After dropping torsion a degree, we see that

H°(F) = Hy(F) (43)
and so overall we get
Hy(F) = m4(F) = 714(S?) = Zy (44)
3.6 m.(SU(3))
Theorem 3.8.
ma(SU(3)) =0 (45)
Proof. need to figure out :blobabouttocry: O

16



4 The Atiyah-Hirzebruch Spectral Sequence

4.1 What is it?
Theorem 4.1.

4.2 K-Theory of CP"
We figure out

4.3 Stable Cohomology Operations and the Nontrivial Dif-
ferentials

Part 11

Derived Categories and the
Grothendieck Spectral Sequence
5 Derived Functors

6 Grothendieck Spectral Sequence

7 Improving the Grothendieck Spectral Sequence-
Derived Categories
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