

A Survey of Spectral Sequence Computations

Gregor Sanfey

July 5, 2021

Contents

1	Introduction	2
1.1	Motivation	2
1.2	Precise Definitions	3
I	Spectral Sequences in Topology	5
2	Bockstein Spectral Sequence	5
2.1	Exact Couples	5
2.2	The Bockstein Spectral Sequence Construction	6
3	Serre Spectral Sequence	6
3.1	$H^*(S^2)$	6
3.2	$H^*(\mathbb{CP}^\infty)$	8
3.3	$H^*(\Omega S^3)$	10
3.4	$H^*(SU(n))$	10
3.5	$\pi_1^s(S^0)$	12
3.6	$\pi_4(SU(3))$	16
4	The Atiyah-Hirzebruch Spectral Sequence	17
4.1	What is it?	17
4.2	K-Theory of \mathbb{CP}^n	17
4.3	Stable Cohomology Operations and the Nontrivial Differentials	17
II	Derived Categories and the Grothendieck Spectral Sequence	17
5	Derived Functors	17
6	Grothendieck Spectral Sequence	17
7	Improving the Grothendieck Spectral Sequence- Derived Categories	17

1 Introduction

1.1 Motivation

Definition 1.1. Recall that, given a space X , we may form the *cohomology ring* of X :

$$H^*(X) = \bigoplus_n H^n(X). \quad (1)$$

The cohomology ring is graded, by the cap product, which means that there is a product:

$$\smile: H^n(X) \times H^m(X) \rightarrow H^{n+m}(X). \quad (2)$$

Furthermore, the cup product is commutative up to a sign: $xy = (-1)^{|x||y|}yx$.

Our goal is to compute this cohomology ring. That is not an easy task. The idea of spectral sequences is to use a lot of easier bits and pieces to compute and then put them all together to obtain $H^*(X)$. To see what I mean, consider the following long exact sequence induced by a CW-pair $A \hookrightarrow X$:

$$\dots \leftarrow H^n(X) \leftarrow H^n(A) \leftarrow H^n(X, A) \xleftarrow{\delta} H^{n-1}(X) \leftarrow \dots \quad (3)$$

But now, say that we can introduce a *filtration* of X . So a nice sequence of inclusions

$$A_0 \hookrightarrow A_1 \hookrightarrow X. \quad (4)$$

This will now give you two long exact sequences:

$$\dots \leftarrow H^n(A_0) \leftarrow H^n(A_1) \leftarrow H^n(A_0, A_1) \xleftarrow{\delta} H^{n-1}(A_0) \leftarrow \dots \quad (5)$$

and

$$\dots \leftarrow H^n(X) \leftarrow H^n(A_1) \leftarrow H^n(X, A_1) \xleftarrow{\delta} H^{n-1}(X) \leftarrow \dots \quad (6)$$

The idea now, is that the cohomology of A_1 and A_0 should be easier to compute than $H^*(X)$. After doing the computation of them, we can hope to move up to the cohomology of X . However, we need not stop at 2 exact sequences! Let's say that we can introduce a filtration which looks like this:

$$A_0 \hookrightarrow A_1 \hookrightarrow \dots \hookrightarrow A_n = X. \quad (7)$$

This now gives rise to many long exact sequences, each approximating the cohomology of X . We can then try to use all of the data we have collected to move up to the cohomology of X . This data comes together to make a spectral sequence.

1.2 Precise Definitions

Definition 1.2. A spectral sequence $\{E_r^{p,q}, d_r\}$ consists of the following information:

- For all $p, q, r > 0$, $E_r^{p,q}$ is an abelian group.
- The differentials $d_r : E_r^{p,q} \rightarrow E_r^{p+r, q-r+1}$ satisfy $d^2 = 0$
- The homology of the r th page is the $r+1$ th page. That is: $H(E_r^{p,q}; d_r) = E_{r+1}^{p,q}$.

We may visualise some of the pages, where the dots are groups:

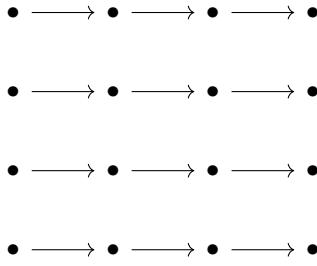


Figure 1: The E_1 page- the differentials go across the p -axis by one and don't go up the q axis since $-1 + 1 = 0$

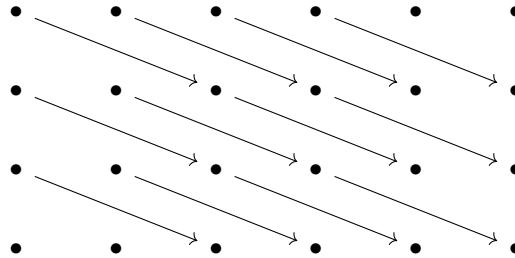


Figure 2: This is the E_2 page; each dot is a group, and each arrow is a differential d_2 , moving across the p axis by 2 and down the q axis by 1.

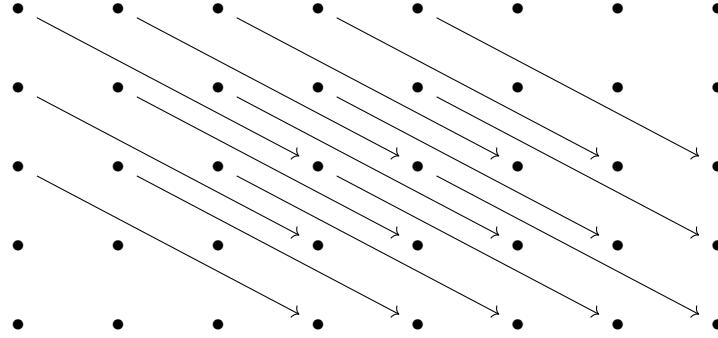


Figure 3: The E_3 page—hopefully you see the pattern now.

It is often the case that E_1 is a well known complex, so normally we state the E_2 page when starting, being the standard cohomology of E_1 .

Definition 1.3. If there is some $r \gg 0$ such that all of the differentials $d_{r'}$ are zero for $r' \geq r$, we say that

$$E_r = E_\infty \quad (8)$$

since

$$E_{r+1} = H(E_r) = E_r. \quad (9)$$

Furthermore, if there is a graded object H_* such that summing along the diagonals gives H_n ;

$$H_n = \bigoplus_{p+q=n} E_\infty^{p,q}. \quad (10)$$

If this happens, we say that the spectral sequence converges to H_* and write:

$$E_2^{p,q} \implies H_* \quad (11)$$

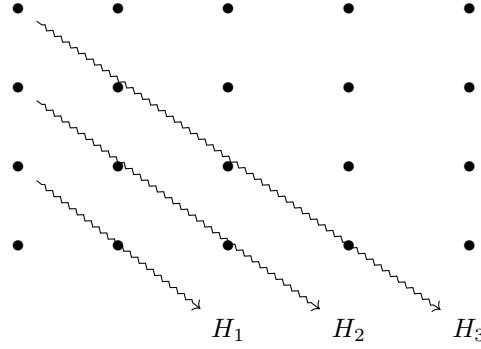


Figure 4: Summing along the diagonals $p + q = 1$, $p + q = 2$, $p + q = 3$ yields H_1 , H_2 , H_3 respectively, along the E_∞ page.

Part I

Spectral Sequences in Topology

2 Bockstein Spectral Sequence

2.1 Exact Couples

We begin this section by introducing the notion of an exact couple in order to set up the Bockstein spectral sequence, which is a setting in which spectral sequences arise very naturally.

Definition 2.1. An *exact couple*, (D, E, i, j, k) consists of two modules, along with three morphisms $i : D \rightarrow D$, $j : D \rightarrow E$ and $k : E \rightarrow D$ such that:

$$\begin{array}{ccc}
 D & \xrightarrow{i} & D \\
 & \nwarrow k & \swarrow j \\
 & E &
 \end{array} \tag{12}$$

is exact at each vertex.

Note that if we set $d = jk : E \rightarrow E$ it becomes a differential, since $d^2 = jkjk = j(kj)k = 0$. We now define the *derived couple* as follows:

Definition 2.2. Given an exact couple, of the form in 12, we define a new exact couple (D', E', i', j', k') with:

- $D' = i(D)$
- $E' = H_*(E; d)$

- $i' = i|_{D'}$
- $j'(i(x)) = j(x) + jk(E) = [j(x)]$
- $k'([y]) = k(y)$

Proposition 2.1. The derived couple is exact

Proof. Exercise □

Because of this, we may do this again, taking the derived couple again, leaving us with a lot of derived couples: $(D^r, E^r, i^r, j^r, k^r)$.

- $(D^1, E^1, i^1, j^1, k^1) = (D, E, i, j, k)$
- $(D^2, E^2, i^2, j^2, k^2) = (D', E', i', j', k')$ and so forth...
- The differential d is given by $d^r = j^r k^r$

turns (E^r, d^r) into a spectral sequence!

2.2 The Bockstein Spectral Sequence Construction

Now, we may construct the Bockstein spectral sequence.

3 Serre Spectral Sequence

3.1 $H^*(S^2)$

Proposition 3.1.

$$H^*(S^3) \cong \mathbb{Z}[x]/(x^2), |x| = 3 \quad (13)$$

Proof. Step 1: Determine the nontrivial elements on the E_2 page and differentials.
For S^2 , this is simple via the Hopf fibration:

$$S^1 \rightarrow S^3 \rightarrow S^2. \quad (14)$$

Now that we know which fiber bundle we're working with, we may determine the E_2 page. More precisely:

$$E_2^{p,q} = H^p(S^2; H^q(S^1)) = \begin{cases} \mathbb{Z} & \text{if } p = 0, 2 \text{ and } q = 0, 1 \\ 0 & \text{otherwise} \end{cases} \quad (15)$$

Now time for some pictures:

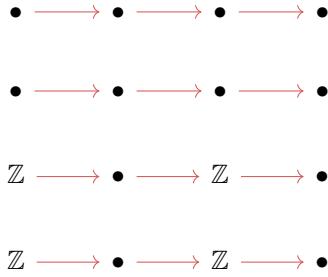


Figure 5: Every differential on the E_1 page is trivial

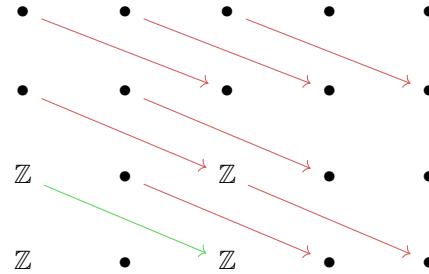


Figure 6: The differential $d_2 : E_2^{0,1} \rightarrow E_2^{2,0}$ is nontrivial.

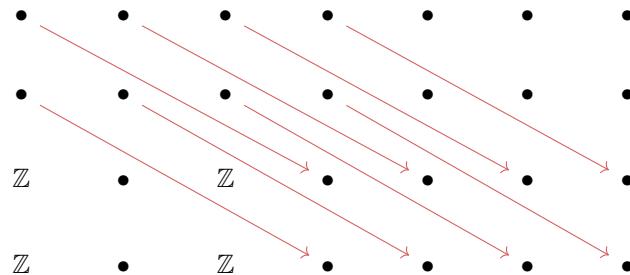


Figure 7: For $r \geq 3$, all of the differentials d_r will have too high of a degree to be nontrivial. Therefore $E_3 = E_\infty$.

Next we show that the differential $d_2 : E_2^{0,1} \rightarrow E_2^{2,0}$ is an isomorphism,

given that:

- $H^0(S^3) = \mathbb{Z}$
- $H^1(S^3) = 0$
- $H^2(S^3) = 0$
- $H^3(S^3) = \mathbb{Z}$

we have that $d_2(1) = \pm 1$. So if $x \in E_2^{0,1}$ is a generator, then $d_2(x) \in E_2^{2,0}$ is also a generator. Furthermore, setting $y = d_2(x)$, we have that:

- x generates $E_2^{0,1}$
- y generates $E_2^{2,0}$
- xy generates $E_2^{2,1}$
- $y^n = 0, n \geq 2$
- $x^n = 0, n \geq 2$

I claim that d_2 is an isomorphism. **Show that d_2 is an isomorphism:**

□

3.2 $H^*(\mathbb{CP}^\infty)$

Theorem 3.2. $H^*(\mathbb{CP}^\infty) = \mathbb{Z}[x], |x| = 2$.

Proof. We will use the fiber bundle:

$$S^1 \rightarrow S^\infty \rightarrow \mathbb{CP}^\infty \tag{16}$$

for the setup of the SSS. We see which terms on the E_2 page are nontrivial:

$$E_2^{p,q} = H^p(\mathbb{CP}^\infty; H^q(S^1)) = \begin{cases} H^p(\mathbb{CP}^\infty) & \text{if } q = 0, 1 \\ 0 & \text{otherwise} \end{cases} \tag{17}$$

Picture time:

insert da pic

Since the spectral sequence converges to $H^*(S^\infty) = 0$, the only nontrivial term on the E_∞ -page will be $E_\infty^{0,0}$. We will now figure out some generators, and try to use induction to compute every $H^n(\mathbb{CP}^\infty)$. The terms we shall observe are:

- $E_2^{1,0}$
- $E_2^{0,1}$
- $E_2^{2,0}$

- $E_2^{2,1}$

Firstly: $E_2^{1,0}$. For each $r \geq 2$, we have it that $d_r : E_2^{1,0} \rightarrow E_2^{1+n, -r+1}$ go into a trivial group, and $d_r : E_2^{*,*} \rightarrow E_2^{1,0}$ go from a trivial group. This implies that $E_2^{1,0} = E_\infty^{1,0}$ which, since $E_\infty^{1,0} \neq E_\infty^{0,0}$, is trivial. The only differential going into $E_2^{2,0}$ is

$$d_2 : E_2^{0,1} \rightarrow E_2^{2,0}. \quad (18)$$

Similarly d_2 is the only nontrivial differential going into $E_{2,0}^2$. We would like to show that d_2 is an isomorphism. Since

$$0 = E_\infty^{0,1} = E_3^{0,1} = \frac{\ker d_2 : E_2^{0,1} \rightarrow E_2^{2,0}}{\text{im } d_2 : E_2^{-2,1} \rightarrow E_2^{0,1}}. \quad (19)$$

In order to make this true, $\ker d_2 = 0$, so d_2 is an injection. Similarly,

$$0 = E_\infty^{2,0} = E_3^{2,0} = \frac{E_2^{2,0}}{\text{im } d_2 : E_2^{0,1} \rightarrow E_2^{2,0}} \quad (20)$$

so $\text{im } d_2 = E_2^{2,0}$ so it must be a surjection. Therefore

$$E_2^{2,0} \cong E_2^{0,1} \cong \mathbb{Z}. \quad (21)$$

Similarly, one can show that $E_2^{2n-1,0} H^{2n-1}(\mathbb{CP}^\infty) \cong 0$ and $E_2^{2n,0} = H^{2n}(\mathbb{CP}^\infty) \cong \mathbb{Z}$. Now pick a generator x for $E_2^{0,1}$. Then:

- $d_2(x) = y \in E_2^{2,0}$ is a generator.
- $xy \in E_2^{2,1}$ is a generator.
- $d_2(xy)$ generates $E_2^{4,0}$.

However, remember that d_2 is multiplicative in the sense that:

$$d_2(xy) = d(x)y + d(y)x = y^2 + 0 = y^2. \quad (22)$$

So y^2 generates $E_2^{4,0} = H^4(\mathbb{CP}^\infty)$. Continuing this process gives the following information:

- $H^{2n-1}(\mathbb{CP}^\infty) = 0$
- $H^{2n}(\mathbb{CP}^\infty) = \mathbb{Z}$, generated by y^n .

So overall:

$$H^*(\mathbb{CP}^\infty) = \mathbb{Z}[x], |x| = 2$$

(23)

□

3.3 $H^*(\Omega S^3)$

Proposition 3.3.

$$H^*(\Omega S^3) \cong \Gamma[x], |x| = 2 \quad (24)$$

Proof. The fiber bundle we shall use is:

$$\Omega S^3 \rightarrow PS^3 \simeq * \rightarrow S^3. \quad (25)$$

Remarks:

- We know the cohomology of S^3 and PS^3 , so we can go ahead and use the Serre spectral sequence.
- Since $PS^3 \simeq *$, we have it that $H^*(PS^3) \cong 0$, so the only nontrivial element of the E_∞ page is $E_\infty^{0,0}$. This is because our spectral sequence will converge to $H^*(PS^3)$.

□

We shall now take a closer look at the E_2 page:

$$E_2^{p,q} = H^p(S^3; H^q(\Omega S^3)) = \begin{cases} H^q(\Omega S^3) & \text{if } p = 0, 3 \\ 0 & \text{otherwise} \end{cases} \quad (26)$$

So the only differential that we care about is d_3 .

3.4 $H^*(SU(n))$

Proposition 3.4.

$$H^*(SU(n)) \cong \Lambda[x_3, \dots, x_{2n-1}] \quad (27)$$

where $|x_n| = n$

Proof. We shall use induction. Thankfully, the base case is very simple since when $n = 2$, we have: $SU(2) \cong S^3$ so

$$H^*(SU(2)) \cong H^*(S^3) \cong \Lambda[x_3] \quad (28)$$

Now assume that $H^*(SU(n-1)) \cong \Lambda[x_3, x_5, \dots, x_{2n-3}]$. This means that in the fiber bundle:

$$SU(n-1) \rightarrow SU(n) \rightarrow S^{2n-1}, \quad (29)$$

we know the cohomology of $SU(n-1)$ and S^{2n-1} , so we are in position to use the Serre spectral sequence. Let's take a look at the E_2 page:

$$E_2^{p,q} = H^p(S^{2n-1}; H^q(SU(n-1))) = \begin{cases} H^q(SU(n-1)) & \text{if } p = 0, 2n-1 \\ 0 & \text{otherwise} \end{cases} \quad (30)$$

The argument for this proof is to show that the spectral sequence will collapse at the E_2 page. You might be thinking that this can't be the case, since the $0th$ and $(2n - 1)th$ columns are interesting, however it turns out that all of the differentials d_{2n-1} will be trivial. Since the differentials are all of bidegree $(2n - 1, -2n - 2)$, it's clear that $d_{2n-1}(a_i) = 0$. The only ones left for the killing are the groups generated by multiple of these generators. However, the multiplicative structure takes care of that:

$$d_{2n-1}(a_i a_n) = d_{2n-1}(a_i) a_n \pm d_{2n-1}(a_n) a_i = 0 \pm 0 = 0. \quad (31)$$

So clearly, all the differentials on the E_{2n-1} page are trivial, and $E_2 = E_\infty$. So now, summing along the diagonals of the E_2 page leaves us with

$$H^*(SU(n)) \cong \Lambda[x_3, \dots, x_{2n-1}] \quad (32)$$

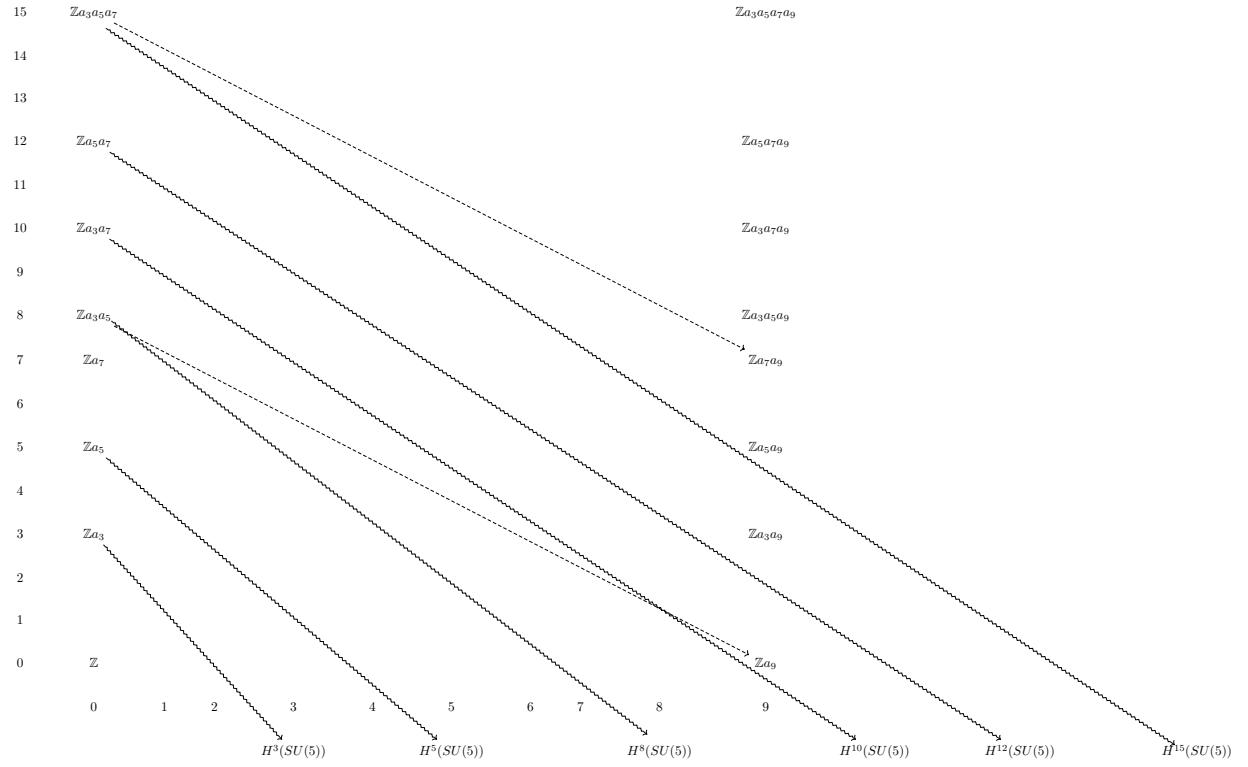


Figure 8: Deducing the cohomology of $SU(5)$ by summing along the diagonals of the E_2 page, assuming $H^*(SU(4)) \cong \Lambda[x_3, \dots, x_7]$

3.5 $\pi_1^s(S^0)$

We now consider some applications to homotopy theory. To do so we require a little bit more set up:

Theorem 3.5. *If X is simply connected, and $H_k(X) = 0$ for $0 < k < n$, then there is a map inducing an isomorphism on homotopy groups:*

$$F \rightarrow X \rightarrow K(\pi_n(X), n), \quad (33)$$

where F is the homotopy fiber such that

$$\pi_i(F) = \begin{cases} 0 & \text{if } k \leq n \\ \pi_i(X) & \text{if } k > n \end{cases} \quad (34)$$

Corollary 3.6 (The Upshot). By the Hurewicz theorem, we see that

$$H_{k+1}(F) = \pi_{n+1}(F) = \pi_{n+1}(X). \quad (35)$$

Hence, if we get such a fiber bundle, we can apply our findings to homotopy theory! A brilliant example of this is computing the first stable stem, aka $\pi_4(S^3)$. Our set up will be of the form:

$$F \rightarrow S^3 \rightarrow K(\mathbb{Z}, 3) \quad (36)$$

which, up to homotopy, gives us a fiber bundle:

$$\Omega K(\mathbb{Z}, 3) \simeq K(\mathbb{Z}, 2) = \mathbb{C}\mathbb{P}^\infty \rightarrow F \rightarrow S^3. \quad (37)$$

Since we know the cohomology of $\mathbb{C}\mathbb{P}^\infty$ and S^3 , we get something that we may compute with the Serre spectral sequence. Our plan, roughly will look like this:

- Figure out the nontrivial terms in the E_2 page
- Figure out where the spectral sequence collapses.
- Compute the differentials by looking at the generators.
- Collect together the terms on the E_∞ page, to obtain some results related to $H^*(F)$
- Pass to universal coefficients to obtain results related to $H_*(F)$
- Use the setup from above to get: $H_4(F) \cong \pi_4(F) \cong \pi_4(S^3)$.

First, see that the E_2 page looks like:

$$E_2^{p,q} = H^p(S^3; H^q(\mathbb{C}\mathbb{P}^\infty)) = \begin{cases} H^q(\mathbb{C}\mathbb{P}^\infty) & \text{if } p = 0, 3 \\ 0 & \text{otherwise} \end{cases} \quad (38)$$

Furthermore, since $H^q(\mathbb{C}\mathbb{P}^\infty) = \begin{cases} \mathbb{Z} & \text{if } q \text{ is even} \\ 0 & \text{otherwise} \end{cases}$

we see that the only nontrivial terms in the E_2 page are:

- $E_2^{0,2n}$
- $E_2^{3,2n}$

or, pictorially,

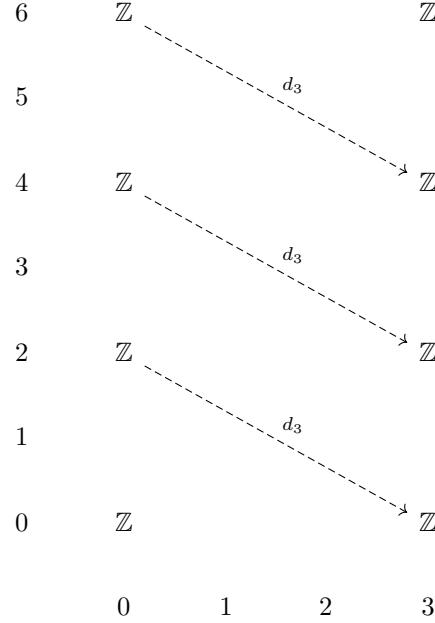


Figure 9: The only nontrivial differentials are $d_3 : E_3^{p,q} \rightarrow E_3^{p+3,q-2}$, since both of the degrees work out. Furthermore, we conclude that $E_4 = E_\infty$.

Now we pick some generators, in order to make computing the differentials easier:

- Let $u \in E_3^{3,0}$ generate $H^3(S^3)$.
- Now let $x \in E_3^{0,2}$ generate $H^2(\mathbb{CP}^\infty)$.

We immediately see:

- x^n generates $E_3^{0,2n}$.
- $u^n = 0$, $n > 0$.
- ux^n generates $E_3^{3,2n}$.

Pictorially this can be visualised as follows:

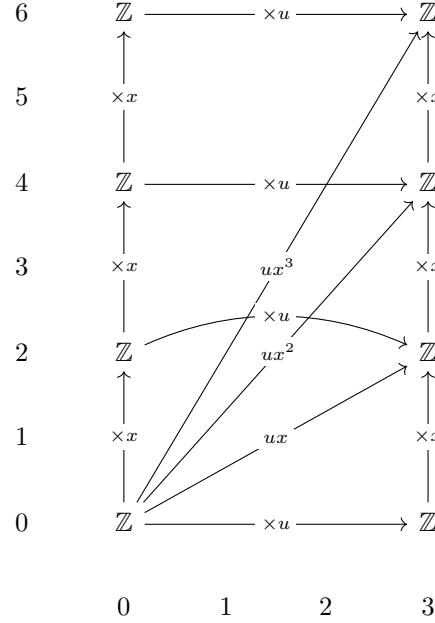


Figure 10: Multiplication by x goes up the ladder, whereas multiplication by u goes across.

We now compute the differential on the generators:

Proposition 3.7. We have

$$d_3(x) = \pm u. \quad (39)$$

Now, since $d_3 : E_3^{0,2n} \rightarrow E_3^{3,2(n-1)}$ is a derivation, we have that

$$d_3(x^n) = \pm nux^{n-1}. \quad (40)$$

With this information, we can finally talk about the $E_4 = E_\infty$ page! More precisely:

- $E_4^{0,2n} = H(E_3^{0,2n}; d_3) = \frac{\ker(d_3: E_3^{0,2n} \rightarrow E_3^{3,2(n-1)})}{\text{im}(d_3: E_3^{0,2n} \rightarrow E_3^{3,2(n-1)})}$. Clearly, since d_3 is an injection, $E_4^{0,2n} = 0$.
- $E_4^{3,2(n-1)} = \frac{\ker(d_3: E_3^{3,2(n-1)} \rightarrow E_3^{6,2(n-2)})}{\text{im}(d_3: E_3^{0,2n} \rightarrow E_3^{3,2(n-1)})}$. Since $E_3^{6,2(n-2)} = 0$, the kernel of the map will be everything (i.e. \mathbb{Z}). Furthermore, since the image of d_3 is generated by $\pm nux^{n-1}$, it acts somewhat like multiplication by n . Hence we get

$$E_4^{3,2(n-1)} \cong \mathbb{Z}_n. \quad (41)$$

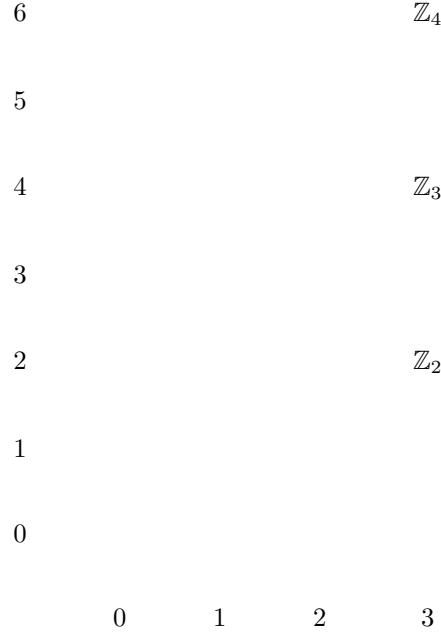


Figure 11: The E_4 page

When we pick $n = 2$, we have that:

$$E_4^{3,2} = H^5(F) = \mathbb{Z}_2 \quad (42)$$

since the spectral sequence converges to $H^*(F)$. Now we know $H^5(F) = \mathbb{Z}_2$. After dropping torsion a degree, we see that

$$H^5(F) = H_4(F) \quad (43)$$

and so overall we get

$$H_4(F) = \pi_4(F) = \pi_4(S^3) = \mathbb{Z}_2 \quad (44)$$

3.6 $\pi_4(SU(3))$

Theorem 3.8.

$$\pi_4(SU(3)) = 0 \quad (45)$$

Proof. need to figure out :blobabouttocry: \square

4 The Atiyah-Hirzebruch Spectral Sequence

4.1 What is it?

Theorem 4.1.

4.2 K-Theory of \mathbb{CP}^n

We figure out

4.3 Stable Cohomology Operations and the Nontrivial Differentials

Part II

Derived Categories and the Grothendieck Spectral Sequence

5 Derived Functors

6 Grothendieck Spectral Sequence

7 Improving the Grothendieck Spectral Sequence-Derived Categories