
A Survey of Spectral Sequence Computations

Gregor Sanfey

July 5, 2021

Contents

1 Introduction 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Precise Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I Spectral Sequences in Topology 5

2 Bockstein Spectral Sequence 5
2.1 Exact Couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Bockstein Spectral Sequence Construction . . . . . . . . . . 6

3 Serre Spectral Sequence 6
3.1 H∗(S2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 H∗(CP∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 H∗(ΩS3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 H∗(SU(n)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 πs1(S0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 π4(SU(3)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 The Atiyah-Hirzebruch Spectral Sequence 17
4.1 What is it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 K-Theory of CPn . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Stable Cohomology Operations and the Nontrivial Differentials . 17

II Derived Categories and the Grothendieck Spectral
Sequence 17

5 Derived Functors 17

6 Grothendieck Spectral Sequence 17

7 Improving the Grothendieck Spectral Sequence- Derived Cat-
egories 17

1



1 Introduction

1.1 Motivation

Definition 1.1. Recall that, given a space X, we may form the cohomology
ring of X:

H∗(X) =
⊕
n

Hn(X). (1)

The cohomology ring is graded, by the cap product, which means that there is
a product:

^: Hn(X)×Hm(X)→ Hn+m(X). (2)

Furthermore, the cup product is commutative up to a sign: xy = (−1)|x||y|yx.

Our goal is to compute this cohomology ring. That is not an easy task. The
idea of spectral sequences is to use a lot of easier bits and pieces to compute
and then put them all together to obtain H∗(X). To see what I mean, consider
the following long exact sequence induced by a CW-pair A ↪→ X:

· · · ← Hn(X)← Hn(A)← Hn(X,A)
δ← Hn−1(X)← . . . . (3)

But now, say that we can introduce a filtration of X. So a nice sequence of
inclusions

A0 ↪→ A1 ↪→ X. (4)

This will now give you two long exact sequences:

· · · ← Hn(A0)← Hn(A1)← Hn(A0, A1)
δ← Hn−1(A0)← . . . . (5)

and

· · · ← Hn(X)← Hn(A1)← Hn(X,A1)
δ← Hn−1(X)← . . . . (6)

The idea now, is that the cohomology of A1 and A0 should be easier to compute
than H∗(X). After doing the computation of them, we can hope to move up to
the cohomology of X. However, we need not stop at 2 exact sequences! Let’s
say that we can introduce a filration which looks like this:

A0 ↪→ A1 ↪→ · · · ↪→ An = X. (7)

This now gives rise to many long exact sequences, each approximating the co-
homology of X. We can then try to use all of the data we have collected to
move up to the cohomology of X. This data comes together to make a spectral
sequence.
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1.2 Precise Definitions

Definition 1.2. A spectral sequence {Ep,qr , dr} consists of the following infor-
mation:

• For all p, q, r > 0, Ep,qr is an abelian group.

• The differentials dr : Ep,qr → Ep+r,q−r+1
r satisfy d2 = 0

• The homology of the rth page is the r+ 1th page. That is: H(Ep,qr ; dr) =
Ep,qr+1.

We may visualise some of the pages, where the dots are groups:

• • • •

• • • •

• • • •

• • • •

Figure 1: The E1 page- the differentials go across the p-axis by one and don’t
go up the q axis since −1 + 1 = 0

• • • • • •

• • • • • •

• • • • • •

• • • • • •

Figure 2: This is the E2 page; each dot is a group, and each arrow is a differential
d2, moving across the p axis by 2 and down the q axis by 1.
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• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

• • • • • • • •

Figure 3: The E3 page-hopefully you see the pattern now.

It is often the case that E1 is a well known complex, so normally we state
the E2 page when starting, being the standard cohomology of E1.

Definition 1.3. If there is some r � 0 such that all of the differentials dr′ are
zero for r′ ≥ r, we say that

Er = E∞ (8)

since

Er+1 = H(Er) = Er. (9)

Furthermore, if there is a graded object H∗ such that summing along the diag-
onals gives Hn;

Hn =
⊕
p+q=n

Ep,q∞ . (10)

If this happens, we say that the spectral sequence converges to H∗ and write:

Ep,q2 =⇒ H∗ (11)
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• • • • •

• • • • •

• • • • •

• • • • •

H1 H2 H3

Figure 4: Summing along the diagonals p + q = 1, p + q = 2, p + q = 3 yields
H1, H2, H3 respectively, along the E∞ page.

Part I

Spectral Sequences in Topology

2 Bockstein Spectral Sequence

2.1 Exact Couples

We begin this section by introducing the notion of an exact couple in order
to set up the Bockstein spectral sequence, which is a setting in which spectral
sequences arise very naturally.

Definition 2.1. An exact couple, (D,E, i, j, k) consists of two modules, along
with three morphisms i : D → D, j : D → E and k : E → D such that:

D D

E

i

jk
(12)

is exact at each vertex.

Note that if we set d = jk : E → E it becomes a differential, since d2 =
jkjk = j(kj)k = 0. We now define the derived couple as follows:

Definition 2.2. Given an exact couple, of the form in 12, we define a new exact
couple (D′, E′, i′, j′, k′) with:

• D′ = i(D)

• E′ = H∗(E; d)
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• i′ = i|D′

• j′(i(x)) = j(x) + jk(E) = [j(x)]

• k′([y]) = k(y)

Proposition 2.1. The derived couple is exact

Proof. Exercise

Because of this, we may do this again, taking the derived couple again,
leaving us with a lot of derived couples: (Dr, Er, ir, jr, kr).

• (D1, E1, i1, j1, k1) = (D,E, i, j, k)

• (D2, E2, i2, j2, k2) = (D′, E′, i′, j′, k′) and so forth...

• The differential d is given by dr = jrkr

turns (Er, dr) into a spectral sequence!

2.2 The Bockstein Spectral Sequence Construction

Now, we may construct the Bockstein specral sequence.

3 Serre Spectral Sequence

3.1 H∗(S2)

Proposition 3.1.

H∗(S3) ∼= Z[x]/(x2), |x| = 3 (13)

Proof. Step 1: Determine the nontrivial elements on the E2 page and differentials.

For S2, this is simple via the Hopf fibration:

S1 → S3 → S2. (14)

Now that we know which fiber bundle we’re working with, we may determine
the E2 page. More precisely:

Ep,q2 = Hp(S2;Hq(S1)) =

{
Z if p = 0, 2 and q = 0, 1

0 otherwise
(15)

Now time for some pictures:
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• • • •

• • • •

Z • Z •

Z • Z •

Figure 5: Every differential on the E1 page is trivial

• • • • •

• • • • •

Z • Z • •

Z • Z • •

Figure 6: The differential d2 : E0,1
2 → E2,0

2 is nontrivial.

• • • • • • •

• • • • • • •

Z • Z • • • •

Z • Z • • • •

Figure 7: For r ≥ 3, all of the differentials dr will have too high of a degree to
be nontrivial. Therefore E3 = E∞.

Next we show that the differential d2 : E0,1
2 → E2,0

2 . is an isomorphism,
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given that:

• H0(S3) = Z

• H1(S3) = 0

• H2(S3) = 0

• H3(S3) = Z

we have that d2(1) = ±1. So if x ∈ E0,1
2 is a generator, then d2(x) ∈ E2,0

2 is
also a generator. Furthermore, setting y = d2(x), we have that:

• x generates E0,1
2

• y generates E2,0
2

• xy generates E2,1
2

• yn = 0, n ≥ 2

• xn = 0, n ≥ 2

I claim that d2 is an isomorphism. Show that d2 is an isomorphism:

3.2 H∗(CP∞)

Theorem 3.2. H∗(CP∞) = Z[x], |x| = 2.

Proof. We will use the fiber bundle:

S1 → S∞ → CP∞ (16)

for the setup of the SSS. We see which terms on the E2 page are nontrivial:

Ep,q2 = Hp(CP∞);Hq(S1)) =

{
Hp(CP∞) if q = 0, 1

0 otherwise
(17)

Picture time:
insert da pic

Since the spectral sequence converges to H∗(S∞) = 0, the only nontrivial term
on the E∞-page will be E0,0

∞ . We will now figure out some generators, and try
to use induction to compute every Hn(CP∞). The terms we shall observe are:

• E1,0
2

• E0,1
2

• E2,0
2
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• E2,1
2

Firstly: E1,0
2 . For each r ≥ 2, we have it that dr : E1,0

2 → E1+n,−r+1
2 go into a

trivial group, and dr : E∗,∗2 → E1,0
2 go from a trivial group. This implies that

E1,0
2 = E1,0

∞ which, since E1,0
∞ 6= E0,0

∞ , is trivial. The only differential going into
E2,0

2 is

d2 : E0,1
2 → E2,0

2 . (18)

Similarly d2 is the only nontrivial differential going into E2
2,0. We would like to

show that d2 is an isomorphism. Since

0 = E0,1
∞ = E0,1

3 =
ker d2 : E0,1

2 → E2,0
2

im d2 : E−2,12 → E0,1
2

. (19)

In order to make this true, ker d2 = 0, so d2 is an injection. Similarly,

0 = E2,0
∞ = E2,0

3 =
E2,0

2

im d2 : E0,1
2 → E2,0

2

(20)

so im d2 = E2,0
2 so it must be a surjection. Therefore

E2,0
2
∼= E0,1

2
∼= Z. (21)

Similarly, one can show that E2n−1,0
2 H2n−1(CP∞) ∼= 0 and E2n,0

2 = H2n(CP∞) ∼=
Z. Now pick a generator x for E0,1

2 . Then:

• d2(x) = y ∈ E2,0
2 is a generator.

• xy ∈ E2,1
2 is a generator.

• d2(xy) generates E4,0
2 .

However, remember that d2 is multiplicative in the sense that:

d2(xy) = d(x)y + d(y)x = y2 + 0 = y2. (22)

So y2 generates E4,0
2 = H4(CP∞). Continuing this process gives the following

information:

• H2n−1(CP∞) = 0

• H2n(CP∞) = Z, generated by yn.

So overall:

H∗(CP∞) = Z[x], |x| = 2 (23)
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3.3 H∗(ΩS3)

Proposition 3.3.

H∗(ΩS3) ∼= Γ[x], |x| = 2 (24)

Proof. The fiber bundle we shall use is:

ΩS3 → PS3 ' ∗ → S3. (25)

Remarks:

• We know the cohomology of S3 and PS33, so we can go ahead and use
the Serre spectral sequence.

• Since PS3 ' ∗, we have it that H∗(PS3) ∼= 0, so the only nontrivial
element of the E∞ page is E0,0

∞ . This is because our spectral sequence will
converge to H∗(PS3).

We shall now take a closer look at the E2 page:

Ep,q2 = Hp(S3;Hq(ΩS3)) =

{
Hq(ΩS3) if p = 0, 3

0 otherwise
(26)

So the only differential that we care about is d3.

3.4 H∗(SU(n))

Proposition 3.4.

H∗(SU(n)) ∼= Λ[x3, . . . x2n−1] (27)

where |xn| = n

Proof. We shall use induction. Thankfully, the base case is very simple since
when n = 2, we have: SU(2) ∼= S3 so

H∗(SU(2)) ∼= H∗(S3) ∼= Λ[x3] (28)

Now assume that H∗(SU(n− 1)) ∼= Λ[x3, x5, . . . x2n−3]. This means that in the
fiber bundle:

SU(n− 1)→ SU(n)→ S2n−1, (29)

we know the cohomology of SU(n− 1) and S2n−1, so we are in position to use
the Serre spectral sequence. Let’s take a look at the E2 page:

Ep,q2 = Hp(S2n−1;Hq(SU(n− 1)) =

{
Hq(SU(n− 1)) if p = 0, 2n− 1

0 otherwise
(30)
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The argument for this proof is to show that the spectral sequence will collapse
at the E2 page. You might be thinking that this can’t be the case, since the
0th and (2n − 1)th columns are interesting, however it turns out that all of
the differentials d2n−1 will be trivial. Since the differentials are all of bidegree
(2n − 1,−2n − 2), it’s clear that d2n−1(ai) = 0. The only ones left for the
killing are the groups generated by multiple of these generators. However, the
multiplicative structure takes care of that:

d2n−1(aian) = d2n−1(ai)an ± d2n−1(an)ai = 0± 0 = 0. (31)

So clearly, all the differentials on the E2n−1 page are trivial, and E2 = E∞. So
now, summing along the diagonals of the E2 page leaves us with

H∗(SU(n)) ∼= Λ[x3, . . . x2n−1] (32)
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15 Za3a5a7 Za3a5a7a9

14

13

12 Za5a7 Za5a7a9

11

10 Za3a7 Za3a7a9

9

8 Za3a5 Za3a5a9

7 Za7 Za7a9

6

5 Za5 Za5a9

4

3 Za3 Za3a9

2

1

0 Z Za9

0 1 2 3 4 5 6 7 8 9

H3(SU(5)) H5(SU(5)) H8(SU(5)) H10(SU(5)) H12(SU(5)) H15(SU(5))

Figure 8: Deducing the cohomology of SU(5) by summing along the diagonals
of the E2 page, assuming H∗(SU(4)) ∼= Λ[x3, . . . x7]

3.5 πs
1(S

0)

We now consider some applications to homotopy theory. To do so we require a
little bit more set up:

Theorem 3.5. If X is simply connected, and Hk(X) = 0 for 0 < k < n, then
there is a map inducing an isomorphism on homotopy groups:

F → X → K(πn(X), n), (33)

where F is the homotopy fiber such that

πi(F ) =

{
0 if k ≤ n
πi(X) if k > n

(34)

Corollary 3.6 (The Upshot). By the Hurewicz theorem, we see that

Hk+1(F ) = πn+1(F ) = πn+1(X). (35)
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Hence, if we get such a fiber bundle, we can apply our findings to homotopy
theory! A brilliant example of this is computing the first stable stem, aka π4(S3).
Our set up will be of the form:

F → S3 → K(Z.3) (36)

which, up to homotopy, gives us a fiber bundle:

ΩK(Z, 3) ' K(Z, 2) = CP∞ → F → S3. (37)

Since we know the cohomology of CP∞ and S3, we get something that we may
compute with the Serre spectral sequence. Our plan, roughly will look like this:

• Figure out the nontrivial terms in the E2 page

• Figure out where the spectral sequence collapses.

• Compute the differentials by looking at the generators.

• Collect together the terms on the E∞ page, to obtain some results related
to H∗(F )

• Pass to universal coefficients to obtain results related to H∗(F )

• Use the setup from above to get: H4(F ) ∼= π4(F ) ∼= π4(S3).

First, see that the E2 page looks like:

Ep,q2 = Hp(S3;Hq(CP∞)) =

{
Hq(CP∞) if p = 0, 3

0 otherwise
(38)

Furthermore, since Hq(CP∞) =

{
Z if q is even

0 otherwise

we see that the only nontrivial terms in the E2 page are:

• E0,2n
2

• E3,2n
2

or, pictorially,
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6 Z Z

5

4 Z Z

3

2 Z Z

1

0 Z Z

0 1 2 3

d3

d3

d3

Figure 9: The only nontrivial differentials are d3 : Ep,q3 → Ep+3,q−2
3 , since both

of the degrees work out. Furthermore, we conclude that E4 = E∞.

Now we pick some generators, in order to make computing the differentials
easier:

• Let u ∈ E3,0
3 generate H3(S3).

• Now let x ∈ E0,2
3 generate H2(CP∞).

We immediately see:

• xn generates E0,2n
3 .

• un = 0, n > 0.

• uxn generates E3,2n
3 .

Pictorially this can be visualised as follows:
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6 Z Z

5

4 Z Z

3

2 Z Z

1

0 Z Z

0 1 2 3

×u

×x

ux2

×x

×x

ux

ux3

×u

×u

×u

×x

×x

×x

Figure 10: Multiplication by x goes up the ladder, whereas multiplication by u
goes across.

We now compute the differential on the generators:

Proposition 3.7. We have

d3(x) = ±u. (39)

Now, since d3 : E0,2n
3 → E

3,2(n−1)
3 is a derivation, we have that

d3(xn) = ±nuxn−1. (40)

With this information, we can finally talk about the E4 = E∞ page! More
precisely:

• E0,2n
4 = H(E0,2n

3 ; d3) =
ker(d3:E

0,2n
3 →E3,2(n−1)

3 )

im(d3:E
−3,2(n+1)
3 →E0,2n

3 )
. Clearly, since d3 is an

injection, E0,2n
4 = 0.

• E
3,2(n−1)
4 =

ker(d3:E
3,2(n−1)
3 →E6,2(n−2)

3 )

im(d3:E
0,2n
3 →E3,2(n−1)

3 )
. Since E

6,2(n−2)
3 = 0, the kernel of

the map will be everything (i.e. Z). Furthermore, since the image of d3 is
generated by ±nuxn−1, it acts somewhat like multiplication by n. Hence
we get

E
3,2(n−1)
4

∼= Zn. (41)
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6 Z4

5

4 Z3

3

2 Z2

1

0

0 1 2 3

Figure 11: The E4 page

When we pick n = 2, we have that:

E3,2
4 = H5(F ) = Z2 (42)

since the spectral sequence converges to H∗(F ). Now we know H5(F ) = Z2.
After dropping torsion a degree, we see that

H5(F ) = H4(F ) (43)

and so overall we get

H4(F ) = π4(F ) = π4(S3) = Z2 (44)

3.6 π4(SU(3))

Theorem 3.8.

π4(SU(3)) = 0 (45)

Proof. need to figure out :blobabouttocry:
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4 The Atiyah-Hirzebruch Spectral Sequence

4.1 What is it?

Theorem 4.1.

4.2 K-Theory of CPn

We figure out

4.3 Stable Cohomology Operations and the Nontrivial Dif-
ferentials

Part II

Derived Categories and the
Grothendieck Spectral Sequence

5 Derived Functors

6 Grothendieck Spectral Sequence

7 Improving the Grothendieck Spectral Sequence-
Derived Categories
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