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Our Goal

I X CW cell complex- we want to compute H∗(X ).

I H∗ is graded, via the cap product.

I However, computing H∗(X ) is much easier said than
done.

One solution to this problem lies in spectral sequences.
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Making the Job Easier...

Assume that A ↪→ X is a CW pair. Then we obtain a long
exact sequence in cohomology:

· · · ← Hn(X )← Hn(A)← Hn(X ,A)
δ← Hn−1(X )← . . .

I This is good, because it helps us to obtain information
about H∗(X ).

I Yet we need not stop here! We can introduce a
filtration- two CW pairs A0 ↪→ A1 ↪→ X .

I This now breaks down the problem of computing
H∗(X ) into 2 even smaller pieces.
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Filtering the CW Pair Further

I We can continue like this:

A0 ↪→ A1 ↪→ · · · ↪→ An−1 ↪→ X .

I This breaks down the problem further

I The algebraic tool used for storing all of the data
encoded by the long exact sequences is called a spectral
sequence.



Spectral Sequence
Talk

Gregor Sanfey

Motivation

Basic Definitions

Serre Spectral
Sequence

Brief Interlude:
Generalised
Cohomology and
Spectra

Atiyah-Hirezbruch
Spectral Sequence

So what is a spectral sequence, precisely?

Definition
A spectral sequence is a collection {Ep,q

r ; dr} such that:

1. Ep,q
r is an abelian group for all r , p, q

2. dp,q
r : Ep,q

r → Ep+r ,q−r+1
r (that is each differential is of

degree (r ,−r + 1)) such that d2
r = 0

3. H(Er ; dr ) = Er+1
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Visualising the first few pages
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The E∞ page
We often write the E2 page first since the E1 page is often a
well understood complex already.

I Often, there will be an r � 0 such that the differentials
dr ′ are trivial for r ′ ≥ r , then
Er = H(Er ; dr ) = Er+1 = Er+2 = . . . .

I This page is called the E∞ page

I We say that a spectral sequence converges to a graded
object H∗ if we can recover each Hn by summing along
the diagonals of the E∞ page modulo extension
problems which we won’t encounter in this talk:

Hn =
⊕

p+q=n

Ep,q
∞

I In this case, we write

Ep,q
2 =⇒ H∗
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Our general strategy

Our general strategy will be:

I Compute every page until we hit the E∞ page

I Recover the homology by summing along the diagonals

What problems will arise?

I What are the differentials?

I When exactly will the spectral sequence collapse?

I We will see what else will cause us problems along the
way. . .
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What is it?

Theorem
Given a Serre fibration F → E → B with simply connected
base space, there is a spectral sequence called the Serre
spectral sequence of the form:

Ep,q
2 = Hp(B;Hq(F )) =⇒ H∗(E ).
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Example Computation: H∗(CP∞)

In order to understand how using the Serre spectral sequence
works, we shall use an example:

Theorem

H∗(CP∞) ∼= Z[x ], |x | = 2
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Figuring Out the E2 Page

I Recall: S1 → S∞ → CP∞ fibration.

Therefore,

Ep,q
2 = Hp(CP∞;Hq(S1)) =

{
Hp(CP∞), if q = 0, 1

0, otherwise

I This spectral sequence converges to H∗(S∞), but
S∞ ' ∗.

I Therefore the only nontrivial element of the E∞ page is
E 0,0
∞ .
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Which differentials do we care about?

Since the only nontrivial elements of the E2 page occur when
q = 0, 1, the only nontrivial differentials will be of the form:

E ∗,12 → E ∗,02

and that is the d2 differential. Therefore:

I E3 = E∞
I Any element of the E2 page such that there is no

nontrivial differential going to or from it will be trivial.
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Searching for generators

We strive to compute:

I E 2,0
2

I E 1,0
2

and then use the generators to do everything else for us.

Theorem
d2 : E 0,1

2 → E 2,0
2 is an isomorphism.
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Showing that it is an isomorphism

I For injectivity, it is enough to show that ker(d2) = 0.
To do this, remember that:

E 0,1
3 =

ker(d2 : E 0,1
2 → E 2,0

2 )

im(d2 : E−2,2
2 → E 0,1

2 )
= 0

Which shows that it is injective since E−2,2
2 = 0.

I For surjectivity it is enough to show that coker(d2) = 0.
We use the exact same reasoning as before:

E 2,0
3 =

ker(d2 : E 2,0
2 → E 4,−1

2 )

im(d2 : E 0,1
2 → E 2,0

2 )
=

E 2,0
2

im(d2 : E 0,1
2 → E 2,0

2 )
= 0
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E 1,0
2 is trivial

I The differential going to E 1,0
2 is:

d2 : E−1,1
2 = 0→ E 1,0

2

I The differential from E 0,1
2 is:

d2 : E 1,0
2 → E 3,−1

2 = 0

Therefore, E 1,0
2 = E 1,0

∞ = 0
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Nearly there... what information do we have?

I E 0,1
2
∼= E 2,0

2
∼= Z. Continuing by induction tells us:

E 2n,0
2 = H2n(CP∞) ∼= Z

I E 1,0
2
∼= 0. Using this and induction shows that

E 2n−1,0
2 = H2n−1(CP∞) = 0.

Now let y generate E 0,1
2 . Then d2(y) = x generates E 2,0

2 .
Hence:

I xy generates E 2,1
2

I d2(xy) generates E 4,0
2 . Yet

d2(xy) = d2(x)y + d2(y)x = x2

Continuing by induction shows that xn generates
E 2n,0

2 = H2n(CP∞) so:

H∗(CP∞) ∼= Z[x ], |x | = 2
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Recap:

I We determined where the nontrivial elements of the E2

page were

I Then, we looked for the nontrivial differentials.

I Then we used the fact that the spectral sequence
converges to S∞ to get more information about the E2

page.

I Then, with this information, we found some generators
and pieced all the information together to get the final
result.
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Application 1: Hurewicz Theorem

Theorem
If X is (n − 1)-connected, n ≥ 2 then πn(X ) ∼= Hn(X ) and
H̃i (X ) = 0, i ≤ n − 1
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Setting everything up

Before we proceed, we need to see what we’re working with
here:

I We will apply the Serre spectral sequence to
ΩX → PX ' ∗ → X
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The base case

We start off for n = 2.

π2(X ) ∼= π1(ΩX ) ∼= H1(ΩX )

I The last isomorphism is the abelianisation, since
π1(ΩX ) = π2(X ) which is abelian.

I Now we must show that H2(X ) ∼= H1(ΩX ).

I The E2 page is given by: E 2
p,q = Hp(X ;Hq(ΩX ))
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Visualising the E 2 page:
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Showing the isomorphism

Theorem
The map d2 : E 2

2,0 = H2(X )→ E 2
0,1 = H1(ΩX )

Proof.
Since PX ' ∗, we can use the same reasoning as before with
our H∗(CP∞) reasoning to show that d2 must be an
isomorphism.
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The Inductive Step:

This time assume the Hurewicz theorem for n − 1. We show
that it is true for n.

I Since X is (n − 1)-connected, ΩX is (n − 2)-connected.

I By the hypothesis applied to ΩX , we have that
πn−1(ΩX ) ∼= Hn−1(ΩX ).

I This then implies that πn(X ) ∼= Hn−1(ΩX ).
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Now we use the spectral sequence!

I In this case, the E 2 page is interesting because:

E 2
p,q = Hp(X ;Hq(ΩX )) = 0

when q < n − 1, by the induction hypothesis on ΩX .

I This means that everybody on the p axis, p ≤ n doesn’t
get affected by the differentials d2, . . . dn.

I The spectral sequence converges to PX ' ∗, so
everything has to get killed somehow hence
dn : En

n,0 = Hn(X )→ En
0,n−1 = Hn−1(ΩX ) must be an

isomorphism and Hi (X ) = 0, 1 ≤ i ≤ n − 1.
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Computation 2: π4(S3)

Theorem

π4(S3) ∼= Z2
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Setting everything up
Before we dive into this proof, we need to somehow use
spectral sequences to compute not only homology but
homotopy groups too. To do so we use the following
theorem:

Theorem
If X is simply connected, and Hk(X ) = 0 for 0 < k < n,
then there is a map inducing an isomorphism on homotopy
groups: F → X → K (πn(X ), n) where F is the homotopy
fiber such that

πi (F ) =

{
0 if k ≤ n

πi (X ) if k > n

Corollary

By the Hurewicz theorem, we see that:
Hk+1(F ) = πn+1(F ) = πn+1(X ).
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Applying this to S3:

Our strategy will be:

I Apply the theorem to get a fibration F → S3 → K (Z, 3)
and hence, up to homotopy, get another fibration:
ΩK (Z, 3) ' K (Z, 2) = CP∞ → F → S3

I Use the strategies as before to obtain H5(F )

I One can drop torsion a degree and hence obtain
H5(F ) ∼= H4(F ) ∼= H4(S3) ∼= π4(S3).
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The E2 page

First we obtain Ep,q
2 :

Ep,q
2 = Hp(S3;Hq(CP∞)) =

{
Hq(CP∞) if p = 0, 3

0 otherwise

Furthermore, Hq(CP∞) =

{
Z if q is even

0 otherwise
, so the only

nontrivial terms of the E2 page are:

I E 0,2n
2

I E 3,2n
2
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Visualising the E2 page
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Where Does it Collapse?

I Clearly, the differentials d2 don’t go far enough across
to be nontrivial

I The d3 differentials, however, do the job.

I For n ≥ 4, the differentials d4 go too far, so the spectral
sequence collapses at the E4 page.
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What are the nontrivial differentials?

First, pick:

I Let u generate E 3,0
3

I un = 0, n > 1

I Let x generate E 0,2
3

I xn generates E 0,2n
3

I uxn generates E 3,2n
3

Now we can “compute the differentials without computing
the differentials”:

d3(x) = ±u
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The E4 page:
Now, since d3 : E 0,2n

3 → E
3,2(n−1)
3 is a derivation, we have

that

d3(xn) = ±nuxn−1.

With this information, we can finally talk about the
E4 = E∞ page! More precisely:

I E 0,2n
4 = H(E 0,2n

3 ; d3) =
ker(d3:E0,2n

3 →E
3,2(n−1)
3 )

im(d3:E
−3,2(n+1)
3 →E0,2n

3 )
. Clearly,

since d3 is an injection, E 0,2n
4 = 0.

I E
3,2(n−1)
4 =

ker(d3:E
3,2(n−1)
3 →E

6,2(n−2)
3 )

im(d3:E0,2n
3 →E

3,2(n−1)
3 )

. Since

E
6,2(n−2)
3 = 0, the kernel of the map will be everything

(i.e. Z). Furthermore, since the image of d3 is
generated by ±nuxn−1, it acts somewhat like
multiplication by n. Hence we get

E
3,2(n−1)
4

∼= Zn.
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Visualsing the E∞ page
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Collecting the information

I Let’s pick n = 2. This gives E 3,2
∞ ∼= Z2

I This is the same as saying that H5(F ) ∼= Z2

I Now we can “drop torsion a degree” and obtain:

H4(F ) = π4(F ) = π4(S3) ∼= Z2
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What else?

These computations may seem long, but hopefully it shows
the extent of the applications of spectral sequences. We
have barely scratched the surface in this talk, however, and
other applications of the Serre spectral sequence are:

I The Wang sequence

I The Gysin sequence

I Many other computations of cohomology groups

I Homotopy groups of spheres
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Exercises

1. Given that U(1) ∼= S1 and we have a fibration
U(n − 1) ↪→ U(n)→ S2n−1, compute H∗(U(n))

2. Compute H∗(ΩSn) using the fibration
ΩX → PX ' ∗ → X for X = Sn

3. Compute the cohomology of the infinite lens space
L(n, q) = S2n−1/Zq, using the fibration
S1 → L(n, q)→ CPn
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Spectra

Before we move onto the Atiyah Hirezbruch spectral
sequence, we look at generalised cohomology and spectra.
There are many reasons for studying spectra:

I Homotopy groups of spectra often represent naturally
occurring invariants in topology, like algebraic K theory.

I From the commutative algebra perspective, we note
that many of the representing spectra carry extra
structure that can make them a ring, in a “suitable
category of spectra”. If we equip this category with
something resembling the tensor product, we end up
with something that looks like a derived category. These
ring spectra are of much interest, but not for this talk.

I Spectra represent generalised cohomology. Indeed,
Brown representability asserts that any homotopy
functor E ∗ that satisfies the Eilenburg MacLane axioms
can be written as: E ∗ = [X ,E ]∗, where E is a spectrum.
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Defining Spectra

Definition
A spectrum (En, εn) is a sequence {En}n∈Z along with maps

εn : ΣEn → En+1.

I Since Σ and Ω are adjoint, a map εn : ΣEn → En+1 is
equivalent to giving a map ε̃n : ΩEn → En+1.

I A Ω-spectrum is a spectrum where ε̃n : ΩEn → En+1 is
a homotopy equivalence
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Examples: (Can you think of any?)
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Generalised Cohomology Theories (Examples)

I For an abelian group G , we write HG for the Eilenburg
Maclane spectrum, which represents singular
cohomology

Hn(X ;G ) = [X ,K (G , n)]∗

I Complex K theory: Let KU2n = Z× BU and
KU2n+1 = ΩBU. Then:

K̃U
0

= K̃ 0(X ) = [X ,KU0]

I This spectrum is periodic, because Bott periodicity says
that BU × Z ' Ω2BU.

I . . . Can you think of more?



Spectral Sequence
Talk

Gregor Sanfey

Motivation

Basic Definitions

Serre Spectral
Sequence

Brief Interlude:
Generalised
Cohomology and
Spectra

Atiyah-Hirezbruch
Spectral Sequence

A Little Bit of History

I One can think of the AHSS as a generalisation of the
Serre spectral sequence, to generalised cohomology
theories.

I Adams credits the discovery of AHSS to Whitehead,
but he is very modest and it was used in a paper of
Atiyah and Hirzebruch for the K theory case.



Spectral Sequence
Talk

Gregor Sanfey

Motivation

Basic Definitions

Serre Spectral
Sequence

Brief Interlude:
Generalised
Cohomology and
Spectra

Atiyah-Hirezbruch
Spectral Sequence

What is it?

Theorem
Given a generalised cohomology theory E ∗ and a fibration
F ↪→ X → B, with B path connected and a CW cell
complex. Then there is a spectral sequence called the
Atiyah-Hirzebruch spectral sequence with:

Ep,q
2 = Hp(B;Eq(F )) =⇒ E ∗(X )

I Note that when F = ∗, we get a fibration ∗ → X → X ,
hence a spectral sequence

Ep,q
2 = Hp(X ;Eq(∗)) =⇒ E ∗(X ).
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K-theory of CPn

Theorem

Kp(CPn) =

{
Zp+1, n even

0, otherwise
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The E2 page

We start by determining the E2 page of our spectral
sequence:

Ep,q
2 = Hp(CPn;Kq(∗)) =⇒ K ∗(CPn).

It’s well known that: Kq(∗) =

{
Z, if q is even

0, otherwise
So our

E2 page becomes:

Ep,q
2 =

{
Hp(CPn), if q is even

0, otherwise

But this becomes

Ep,q
2 =

{
Z, if q and p are even, 0 ≤ p ≤ 2n

0, otherwise
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Visualising the E2 page
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Recovering the data

Becuase the differentials are of bidegree (r , 1− r), one of
these is odd, so all differentials will be trivial. Hence
E2 = E∞. Hence we can recover Km(CPn):

Km(CPn) =
⊕

p+q=n

Ep,q
∞ =

{
Zn+1, if m is even

0, otherwise
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k-invariants

I Suppose that there is a spectrum with one nontrivial
homotopy group πn(E ). Then E ' ΣnHπn(E ) (it’s a
shift of an Eilenburg Maclane spectrum).

I This works out nicely, but when it has two nontrivial
homotopy groups, it doesn’t work out so nicely- it need
not be a wedge of two shifts of the Eilenburg Maclane
spectrum.

I However, not all hope is lost- they fit nicely into a fiber
sequence with two Eilenburg Maclane spectra.
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How do they fit together?

ΣnHπn(E ) E

Hπ0(E )

ϕ

ΣnHπn(E ) E

Hπ0(E ) Σn+1Hπn(E )

ϕ

k
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What does this tell us?

I Firstly it helps us to answer the question of when a
spectrum E with two nontrivial homotopy groups is a
wedge sum of shifts of Eilenburg Maclane spectra; it
happens iff k = 0.

I For a spectrum E such that πk(E ) = 0 for i < k < j ,
then there are k-invariants between i and j , by iterating
this proceedure.

I k-invariants are examples of stable cohomology
operations



Spectral Sequence
Talk

Gregor Sanfey

Motivation

Basic Definitions

Serre Spectral
Sequence

Brief Interlude:
Generalised
Cohomology and
Spectra

Atiyah-Hirezbruch
Spectral Sequence

Stable cohomology operations

Definition
A stable cohomology operation is a natural transformation
Hn(−;A)→ Hn(−;B) which commutes with the suspension.
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Examples

I The Bockstein homomorphism β- the connecting
homomorphism in the les in homology associated to the
ses 0→ Z→ Z→ Zp.

I Over Z, stable cohomology operations aren’t all that
interesting.

I However, over Fp, they are very interesting!
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Steenrod algebra

I In general, Hn(X ;Zp)→ H2n(X ;Zp), x 7→ x ^ x isn’t
a homomorphism. However, for p = 2, it is! Yet it still
isn’t natural, or stable. So we amend this with the
Steenrod squares.

I The set of cohomology operations
H∗(X ;Z2)→ H∗+n(X ;Z2) form a graded Z2 algebra
under composition generated by the Steenrod squares

Sqn : H∗(X ;Z2)→ H∗+n(X ;Z2).
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Definition of the Steenrod squares

Definition (Steenrod squares)

1. They are group homomorphisms, natural and stable

2. Sq0 = id and Sq1 = β, the Bockstein associated to

0→ Z2 → Z4 → Z2 → 0

3. When |x | = n, Sqn(x) = x ^ x

4. When |x | < n, Sqn(x) = 0

5. Sqn(xy) =
∑

i+j=n Sq
i (x)Sqj(y)
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Quick facts

Theorem
These relations uniquely define the Steenrod squares and
their action on mod 2 cohomology of spaces.

Theorem (Adem relation)

SqiSqj =

b i
2
c∑

k=0

(
j − k − 1

i − 2k

)
Sqi+j−kSqk
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Back to AHSS...

If we have a spectrum E with πq(E ) and πq+r (E ) nontrivial
but πk(E ) trivial for all q < k < q + r then:

Theorem
The first nontrivial differential in the cohomological AHSS
from Ep,−q

r+1 → Ep+r ,−r−q
r+1 is identified with the k-invariant

Hp(−;πq(E ))→ Hp+r+1(−;πq+r (E )).

I This often enough for us

I For higher differentials, they are determined by higher
cohomology operations.
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K -theory

I Complex K theory admits one k-invariant, since it is
2-periodic.

I The k-invariant is given by
β ◦ Sq2 ◦ r : H∗(−;Z)→ H∗+3(−;Z)

I Due to the nature of the zeros of real K -theory’s
homotopy groups and its 8 periodicity, we get 4
k-invariants:
I Sq2 ◦ r
I Sq2

I β ◦ Sq2

I β ◦ Sq4
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Stable Homotopy Theory over Q

I It turns out that stable homotopy operations are trivial
over Q

I This in turn means that AHSS is much simpler over Q
I In fact, it is so much nicer that all extension problems

and differentials are trivial!

I Even more strongly, the ∞ category of rational spectra
is equivalent to the ∞-category of chain complexes over
Q.
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Further directions

Again, we have barely touched the surface:

1. I didn’t talk at all about a very large area where this is
applicable- bordism.
I For unoriented bordism, Thom showed that MO is a

wedge sum of shifts of the Eilenburg Maclane spectrum.
Therefore the k-invariants are trivial and the AHSS
collapses at the E2 page without having to think about
extension problems.

2. Homotopy groups of spheres
I As with most spectral sequences, one can apply them to

obtain results about homotopy groups of spheres. The
AHSS is not an exception.
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