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Motivation

» X CW cell complex- we want to compute H*(X).
» H* is graded, via the cap product.

» However, computing H*(X) is much easier said than
done.

One solution to this problem lies in spectral sequences.



Spectral Sequence

Making the Job Easier... Talk
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Motivation
Assume that A — X is a CW pair. Then we obtain a long
exact sequence in cohomology:

= H(X) = HP(A) = HY(X, A) & H™H(X) « ...

» This is good, because it helps us to obtain information
about H*(X).

> Yet we need not stop here! We can introduce a
filtration- two CW pairs Ag — A1 — X.

» This now breaks down the problem of computing
H*(X) into 2 even smaller pieces.



Filtering the CW Pair Further B S

Gregor Sanfey

Motivation

» We can continue like this:
Ay = Al —= - = A1 = X

» This breaks down the problem further

» The algebraic tool used for storing all of the data
encoded by the long exact sequences is called a spectral
sequence.



Spectral Sequence

So what is a spectral sequence, precisely? Talk
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Basic Definitions

Definition
A spectral sequence is a collection {Ef"?; d,} such that:
1. EP7is an abelian group for all r,p, q
2. dP?: EPT — EPTT9 L (that is each differential is of
degree (r,—r + 1)) such that d? = 0
3. H(E: d,) = Ea



Visualising the first few pages
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Spectral Sequence
The E, page e Sl

We often write the E; page first since the E; page is often a Sieger Sty
well understood complex already.

» Often, there will be an r > 0 such that the differentials  Basic Definitions
dy are trivial for r' > r, then
E,=H(E;d)=Ei1=E12=....

» This page is called the E,, page

> We say that a spectral sequence converges to a graded
object H* if we can recover each H" by summing along
the diagonals of the E,, page modulo extension
problems which we won't encounter in this talk:

n_ p:q
- @ e
p+q=n

» In this case, we write

P,q *
E" = H



Spectral Sequence

Our general strategy Talk
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Basic Definitions
Our general strategy will be:
» Compute every page until we hit the E,, page
» Recover the homology by summing along the diagonals
What problems will arise?
» What are the differentials?
> When exactly will the spectral sequence collapse?

> We will see what else will cause us problems along the
way. . .



. . Spectral Sequence
What is it? e 'Il'alkq
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Serre Spectral
Sequence

Theorem

Given a Serre fibration F — E — B with simply connected
base space, there is a spectral sequence called the Serre
spectral sequence of the form:

EP9 = HP(B; H(F)) = H*(E).



Spectral Sequence

Example Computation: H*(CP>) Tk
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Serre Spectral
Sequence

In order to understand how using the Serre spectral sequence
works, we shall use an example:

Theorem

H*(CP™®) = Z[x], |x| = 2



Flgurlng Out the E2 Page Spectra_ll_aSIEquence
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» Recall: ST — S — CP* fibration.
Therefore,

Serre Spectral
Sequence

EP9 = HP(CP>; HI(S')) = {0 otherwise

» This spectral sequence converges to H*(5°), but
5% ~ x,

» Therefore the only nontrivial element of the E,, page is
E20.



Visualising the E, page:
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Spectral Sequence

Which differentials do we care about? Talk
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Serre Spectral

Since the only nontrivial elements of the E, page occur when  sequence
g = 0, 1, the only nontrivial differentials will be of the form:

*,1 *,0
E,” = E,

and that is the d5 differential. Therefore:
> £ =E

» Any element of the E, page such that there is no
nontrivial differential going to or from it will be trivial.



Searching for generators

We strive to compute:
2,0
> E,
1,0
> E,
and then use the generators to do everything else for us.

Theorem
ds : EZO’1 — E22’0 is an isomorphism.

Spectral Sequence
Talk
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Serre Spectral
Sequence



Spectral Sequence

Showing that it is an isomorphism Talk
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» For injectivity, it is enough to show that ker(d>) = 0.
To do this, remember that: Serre Spectral

Sequence

0, 2,0
Eo’l _ ker(d2 : E2 1 — E2 ) -0
3 . . -—2,2 0,1
|m(d2 . E2 — E2 )

Which shows that it is injective since E_2’ =0.

» For surjectivity it is enough to show that coker(dz) =
We use the exact same reasoning as before:

£20_ ker(dp : £5° = E;7Y) _ E;°

=0
im(dy : Bt — E5%)  im(da: Byt — E3°)




Spectral Sequence

10+ e
E,” is trivial Talk
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Serre Spectral

» The differential going to E21’0 is: Sequence
d: By =0 E°

> The differential from £ is:
d: 5%~ Ey =0

Therefore, E21’0 = Eé;o =0



Spectral Sequence

Nearly there... what information do we have? Talk

0.1 50 Gregor Sanfey
> E,;° = E;" = 7. Continuing by induction tells us:

E;"° = H>"(CP>) = Z
> E§’0 2 0. Using this and induction shows that Serre Spectral
E22n—1,0 — H2n-1(CP®) = 0. Sequence
Now let y generate Eg’l. Then d>(y) = x generates E22’0.
Hence:
P> xy generates E22’1

» dh(xy) generates Eg’o. Yet

da(xy) = da(x)y + da(y)x = x*

Continuing by induction shows that x" generates
E;™0 = H2(CP>) so:

|H*(CP™) = Z]x], |x| = 2




Spectral Sequence

Reca p: Talk
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Serre Spectral

» We determined where the nontrivial elements of the £ Sequence
page were

» Then, we looked for the nontrivial differentials.

> Then we used the fact that the spectral sequence
converges to S to get more information about the E;
page.

» Then, with this information, we found some generators

and pieced all the information together to get the final
result.



Application 1: Hurewicz Theorem

Theorem
If X is (n — 1)-connected, n > 2 then mn(X) = Hp(X) and
Fi(X)=0,i<n—1

Spectral Sequence
Talk
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Serre Spectral
Sequence



Spectral Sequence

Setting everything up Talk
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Serre Spectral
Sequence

Before we proceed, we need to see what we're working with
here:

» We will apply the Serre spectral sequence to
QX - PX ~x — X



Spectral Sequence

The base case Talk
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We start off for n = 2. Serre Spectral

Sequence

m(X) 2 11 (QX) 22 Hy (2X)

» The last isomorphism is the abelianisation, since
m1(Q2X) = m2(X) which is abelian.

» Now we must show that Hp(X) = Hi(Q2X).
» The E; page is given by: E,f,q = Hp(X; Hg(2X))
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Spectral Sequence

Showing the isomorphism Talk

Gregor Sanfey

Serre Spectral
Sequence

Theorem
The map d° : B3y = Ha(X) = E§; = Hi(QX)

Proof.

Since PX ~ %, we can use the same reasoning as before with
our H*(CIP>) reasoning to show that d? must be an
isomorphism. []



Spectral Sequence

The Inductive Step: Talk
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Serre Spectral
Sequence

This time assume the Hurewicz theorem for n — 1. We show
that it is true for n.

» Since X is (n — 1)-connected, QX is (n — 2)-connected.

» By the hypothesis applied to 2.X, we have that
7T,,,1(QX) = H,,,l(QX).
» This then implies that 7,(X) = H,_1(Q2X).



Now we use the spectral sequence! I S

Gregor Sanfey

» In this case, the E? page is interesting because:

Serre Spectral
Sequence

E2 = Hp(X; Hg(2X)) =0

when g < n— 1, by the induction hypothesis on QX.

» This means that everybody on the p axis, p < n doesn't
get affected by the differentials d?,...d".

» The spectral sequence converges to PX =~ %, so
everything has to get killed somehow hence
d": Ellg = Hn(X) — Ef,_1 = Hn—1(22X) must be an
isomorphism and H;(X) =0,1</<n-—1.



Computation 2: m4(S?)

Theorem

ma(S%) = 7

(ar <Fr <=»

«E>»

o



Spectral Sequence

Setting everything up Talk

Before we dive into this proof, we need to somehow use regor saniey

spectral sequences to compute not only homology but
homotopy groups too. To do so we use the following
theorem: Serre Spectral

Sequence

Theorem

If X is simply connected, and Hx(X) =0 for 0 < k < n,
then there is a map inducing an isomorphism on homotopy
groups: F — X — K(mn(X), n) where F is the homotopy
fiber such that

0 ifk <
mi(F) = =
mi(X) ifk>n

Corollary

By the Hurewicz theorem, we see that:
Hk1(F) = may1(F) = mny1(X).



Applying this to S3:

Our strategy will be:

» Apply the theorem to get a fibration F — S3 — K(Z, 3)
and hence, up to homotopy, get another fibration:
OK(Z,3) ~ K(Z,2) = CP>*® — F — S8

> Use the strategies as before to obtain H°(F)

» One can drop torsion a degree and hence obtain
H3(F) =2 Hy(F) =2 Hq(S3) =2 m4(S3).

Spectral Sequence
Talk

Gregor Sanfey

Serre Spectral
Sequence



Spectral Sequence

The E2 page Talk
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First we obtain E2p’q :

Serre Spectral
Sequence

N HI(CP>®) ifp=0,3
Ef? = HP(S®; HY(CP*>)) = {0 otherwise

7 g
Furthermore, HY(CP*>) = "qis éven' so the only
0 otherwise

nontrivial terms of the E; page are:
0,2n
> E;
3,2n
| E2
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Where Does it Collapse? Spectral Seauence
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Serre Spectral
Sequence

» Clearly, the differentials d» don't go far enough across
to be nontrivial
» The ds differentials, however, do the job.

» For n > 4, the differentials d; go too far, so the spectral
sequence collapses at the E; page.



What are the nontrivial differentials?

First, pick:
P> Let u generate E;,o
> u"=0,n>1
> Let x generate Eg’z
> x" generates Eg,zn
> ux" generates E33’2"

Now we can “compute the differentials without computing
the differentials”:

di3(x) = tu

Spectral Sequence
Talk

Gregor Sanfey

Serre Spectral
Sequence



Spectral Sequence

The E4 page: Talk
H . 0,2n 372('7_1) H H H Gregor Sanfe
Now, since d3 : E3°" — Ej is a derivation, we have g y
that

d3(x") = £nux""1.
Serre Spectral
Sequence

With this information, we can finally talk about the
E4, = E, page! More precisely:
0,2n 0,2n ker(ds:EQ2"— £22(1))
> E, " = H(E;""; d3) = 3 3 .
4 ( 3 3) im(d3:E3_3’2("+1)~>E£’2")
since d3 is an injection, E2’2" =0.
p 320n-1) _ ker(ds: 22" L S22
4 - . .0,2n 3,2(n—1)
im(d3:E5 "= E; )
Eg’z(”_2) = 0, the kernel of the map will be everything
(i.e. Z). Furthermore, since the image of d3 is
generated by +nux""1, it acts somewhat like
multiplication by n. Hence we get

Clearly,

. Since

P D=7,
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Spectral Sequence

Collecting the information Talk
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Serre Spectral
Sequence

> Let's pick n = 2. This gives E3? = 7,
» This is the same as saying that H°(F) = Z;

> Now we can “drop torsion a degree” and obtain:

Hy(F) = m4(F) = m4(S3) = Zs



Spectral Sequence
What else? e
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Serre Spectral

These computations may seem long, but hopefully it shows Sequence
the extent of the applications of spectral sequences. We

have barely scratched the surface in this talk, however, and

other applications of the Serre spectral sequence are:

» The Wang sequence
» The Gysin sequence
» Many other computations of cohomology groups

» Homotopy groups of spheres



Spectral Sequence

Exercises Talk
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Serre Spectral
Sequence

1. Given that U(1) = ST and we have a fibration
U(n—1) < U(n) — S2™~1, compute H*(U(n))
2. Compute H*(25") using the fibration
QX — PX ~% — X for X = 5"

3. Compute the cohomology of the infinite lens space
L(n,q) = S?"71/Z,, using the fibration
St — L(n,q) — CP"



Spectral Sequence

S pect ra Talk
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Before we move onto the Atiyah Hirezbruch spectral
sequence, we look at generalised cohomology and spectra.
There are many reasons for studying spectra:

>

>

Homotopy groups of spectra often represent naturally
occurring invariants in topology, like algebraic K theory. Briefi Interlude:

Generalised

. . Coh | d
From the commutative algebra perspective, we note Sectra 2"

that many of the representing spectra carry extra
structure that can make them a ring, in a “suitable
category of spectra”. If we equip this category with
something resembling the tensor product, we end up
with something that looks like a derived category. These
ring spectra are of much interest, but not for this talk.

Spectra represent generalised cohomology. Indeed,
Brown representability asserts that any homotopy
functor E* that satisfies the Eilenburg MacLane axioms
can be written as: E* = [X, E]., where E is a spectrum.



Defl n | ng Spect ra Spectra_ll_aSIEquence
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Definition
A spectrum (E,, €p) is a sequence {E,}ncz along with maps Brie Interude:
eneralise
Cohomology and
Spectra

€n: SEn — Eny1.

» Since X and Q are adjoint, a map €, : LE, — Ep11 is
equivalent to giving a map €, : QE, — Eny1.

> A Q-spectrum is a spectrum where €, : QE, — E 41 is
a homotopy equivalence



Examples: (Can you think of any?)
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Generalised Cohomology Theories (Examples) B S
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» For an abelian group G, we write HG for the Eilenburg
Maclane spectrum, which represents singular
cohomology

Brief Interlude:
Hn(X' G) = [X7 K(G7 n)]* SZEZ:IOITZ; and
Spectra
» Complex K theory: Let KUs, = Z x BU and
KU2n+1 = QBU. Then:

KU° = RO(X) = [X, KUp]

» This spectrum is periodic, because Bott periodicity says
that BU x Z ~ Q°BU.

» ...Can you think of more?



Spectral Sequence

A Little Bit of History Talk
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» One can think of the AHSS as a generalisation of the
Serre spectral sequence, to generalised cohomology
theories' Atiyah-Hirezbruch

» Adams credits the discovery of AHSS to Whitehead, spectal Sequence
but he is very modest and it was used in a paper of
Atiyah and Hirzebruch for the K theory case.



. . Spectral Sequence
What is it? e 'Il'alkq
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Theorem

Given a generalised cohomology theory E* and a fibration
F — X — B, with B path connected and a CW cell
complex. Then there is a spectral sequence called the

Atiyah-Hirzebruch spectral sequence with:

Atiyah-Hirezbruch
Spectral Sequence

EY9 = HP(B; EY(F)) = E*(X)

> Note that when F = %, we get a fibration * — X — X,
hence a spectral sequence

EP9 = HP(X; E9(x)) = E*(X).



K-theory of CPP"

Theorem

KP(CP") =

ZPTL, n even

0, otherwise

Spectral Sequence
Talk

Gregor Sanfey

Atiyah-Hirezbruch
Spectral Sequence



The E2 page SpECtra_II_aSIEquencg
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We start by determining the E; page of our spectral
sequence:

EP9 = HP(CP"; K9(x)) = K*(CP").

Z, if g is even

It's well known that: K9(x) = { So our

0, otherwise
Atiyah-Hirezbruch
E2 page becomes: Spectral Sequence

£ _ HP(CP"), if q is even
2 = .
0, otherwise

But this becomes

£Pa _ Z, if g and p are even, 0 < p < 2n
2 = .
0, otherwise



Visualising the E, page
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Spectral Sequence

Recovering the data Talk
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Becuase the differentials are of bidegree (r,1 — r), one of
these is odd, so all differentials will be trivial. Hence
E; = E,. Hence we can recover K™(CP"):

m(CP") @ Epa _ {Z”+1, if mis even

Atiyah-Hirezbruch
Spectral Sequence

phaen 0, otherwise



Spectral Sequence

k-invariants Talk
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» Suppose that there is a spectrum with one nontrivial
homotopy group m,(E). Then E ~ X"Hm,(E) (it's a
shift of an Eilenburg Maclane spectrum).

» This works out nicely, but when it has two nontrivial ST
homotopy groups, it doesn't work out so nicely- it need Seecesss
not be a wedge of two shifts of the Eilenburg Maclane
spectrum.

» However, not all hope is lost- they fit nicely into a fiber
sequence with two Eilenburg Maclane spectra.



How do they fit together?

S Hp(E) —— E

HT['()(E)

S Hrp(E) ——— E

Hro(E) —*—— " 1Hm,(E)

Spectral Sequence
Talk

Gregor Sanfey

Atiyah-Hirezbruch
Spectral Sequence



What does this tell us? R
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> Firstly it helps us to answer the question of when a
spectrum E with two nontrivial homotopy groups is a
wedge sum of shifts of Eilenburg Maclane spectra; it
happens iff k = 0.

Atiyah-Hirezbruch
» For a spectrum E such that mx(E) =0 for i < k < J, Spectal Sequence
then there are k-invariants between i and j, by iterating
this proceedure.
» k-invariants are examples of stable cohomology
operations



Spectral Sequence

Stable cohomology operations Talk

Gregor Sanfey

Definition
A stable cohomology operation is a natural transformation g‘;‘eyjt*:;'isfzzzf:ncche
H"(—; A) — H"(—; B) which commutes with the suspension.



Spectral Sequence

Exa m ples Talk
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» The Bockstein homomorphism (- the connecting
homomorphism in the les in homology associated to the
ses 0 = Z — 7L — Zp.

Atiyah-Hirezbruch
Spectral Sequence

» Over Z, stable cohomology operations aren’t all that
interesting.

» However, over I, they are very interesting!



Spectral Sequence

Steenrod algebra Talk
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> In general, H"(X;Zp) — H*"(X;Zp), x — x — x isn't
a homomorphism. However, for p = 2, it is! Yet it still
isn't natural, or stable. So we amend this with the

Steenrod squares.
. Atiyah-Hirezbruch
» The set of cohomology operations Spectral Sequence

H*(X; Zp) — H**"(X;Z5) form a graded Z, algebra
under composition generated by the Steenrod squares

Sq" 1 H*(X; Za) — H*"(X; Z3).



Spectral Sequence

Definition of the Steenrod squares Talk
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Definition (Steenrod squares)

1. They are group homomorphisms, natural and stable
2. Sq° = id and Sq* = 3, the Bockstein associated to

Atiyah-Hirezbruch
0 - Z2 - Z4 — ZZ — O Spectral Sequence

3. When |[x| = n, Sq"(x) = x —
4. When |[x| < n, Sq"(x) =0
5. 5q"(xy) = i1 jn Sd' (X)S¢ (¥)



Spectral Sequence

Quick facts Talk
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Theorem
These relations uniquely define the Steenrod squares and
their action on mod 2 cohomology of spaces.

Theorem (Adem I’elatlon) Atiyah-Hirezbruch

Spectral Sequence



BaCk to AH SS . Spectra_ll_aslsquence
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If we have a spectrum E with 74(E) and mq4,(E) nontrivial
but 7x(E) trivial for all ¢ < k < g + r then:

Theorem

The first nontrivial differential in the cohomological AHSS
from Ef 19 — Ef:lr’_r_q is identified with the k-invariant P
Spectral Sequence

HP (= mq(E)) — HPT Y (=i mq4r(E)).

» This often enough for us

» For higher differentials, they are determined by higher
cohomology operations.



K-theory

» Complex K theory admits one k-invariant, since it is
2-periodic.

» The k-invariant is given by
BoSq?or: H(—Z) — H3(—; Z)

» Due to the nature of the zeros of real K-theory's
homotopy groups and its 8 periodicity, we get 4
k-invariants:

| 2 Sq2 or
| 4 Sq2

> BoSq’
> 3oSq*

Spectral Sequence
Talk
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Atiyah-Hirezbruch
Spectral Sequence



Spectral Sequence

Stable Homotopy Theory over Q Talk
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P It turns out that stable homotopy operations are trivial
over Q

» This in turn means that AHSS is much simpler over

Atiyah-Hirezbruch
Spectral Sequence

» In fact, it is so much nicer that all extension problems
and differentials are trivial!

» Even more strongly, the co category of rational spectra
is equivalent to the co-category of chain complexes over

Q.



Spectral Sequence

Further directions Talk
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Again, we have barely touched the surface:
1. I didn't talk at all about a very large area where this is
applicable- bordism.
» For unoriented bordism, Thom showed that MO is a

wedge sum of shifts of the Eilenburg Maclane spectrum. -
Therefore the k-invariants are trivial and the AHSS S
collapses at the E, page without having to think about
extension problems.

2. Homotopy groups of spheres
» As with most spectral sequences, one can apply them to
obtain results about homotopy groups of spheres. The
AHSS is not an exception.
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