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Notational Remark

Following the notation used by Lurie, I shall be denoting by the models of
(∞, 1)-categories in these slides by ∞-categories.
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The Plan...

1 Introduction

2 Basics of ∞-categories
Some Basics of Simplicial Sets
The Definition of an ∞-category
Making the Plan Precise

3 What Next?
Constructions on ∞-categories
Higher Algebra
Goodwillie Calculus
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The Fundamental groupoid

Before I begin the talk, I would like to start off by giving a rough sketch of
the fundamental ∞-groupoid.

Definition

Recall that the fundamental groupoid of a space X π≤1(X ) is a groupoid,
whose objects are points in X and whose morphisms are homotopy classes
of paths x → y relative to basepoints.
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The Fundamental Groupoid

Definition

Recall that the fundamental groupoid of a space X π≤1(X ) is a groupoid,
whose objects are points in X and whose morphisms are homotopy classes
of paths x → y relative to basepoints.

This is a groupoid, since all paths admit an inverse up to homotopy.
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The Fundamental Groupoid

Definition

Recall that the fundamental groupoid of a space X π≤1(X ) is a groupoid,
whose objects are points in X and whose morphisms are homotopy classes
of paths x → y relative to basepoints.

This is a groupoid, since all paths admit an inverse up to homotopy.

However, it discards a lot of information. A better version is the

fundamental ∞-groupoid, π<∞(X )
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Description of the Fundamental ∞-groupoid

Roughly, we construct the fundamental ∞-groupoid of a space X ,
π<∞(X ) as follows:

Objects are given by points in X

Morphisms are paths x → y

2-morphisms are given by homotopies between these paths

Higher morphisms are given by higher homotopies
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Why Do We Call it a Groupoid?

Objects are given by points in X

Morphisms are paths x → y

2-morphisms are given by homotopies be-
tween these paths

Higher morphisms are given by higher ho-
motopies


Invertible in a weak sense
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Introduction

Category theory is a very useful language, but it certain limitations.

In mathematics, we often would like to identify two objects which are
not isomorphic, but ”weakly equivalent” in the homotopy theoretic
sense.

For example, in homological algebra it is desirable to consider chain
complexes up to quasi isomorphism. Furthermore in homotopy theory,
we also would like to consider weakly homotopic spaces as isomorphic.
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Weak Equivalences

Convenient languages for a pair (C,W) of a category along with a class of
morphisms called weak equivalences which we also want to be thought of
as isomorphisms have been searched for. These include:

Model categories

Derivators

Simplicial Categories

Topological categories

∞-categories
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Weak Equivalences

Model categories

Derivators

Simplicial Categories

Topological categories

∞-categories

All part the theory of (∞, 1)-categories
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The Information We Want

We would like certain information in an (∞, 1)-category:

A class of objects

Morphisms between objects, 2-morphisms between morphisms,
3-morphisms between 2-morphisms and so forth. This explains why
there is an ∞ in the name

Morphisms can be composed in an associative and unital way.

Higher morphisms (2-morphisms, 3-morphisms and so forth) should
be invertible, at least up to higher morphisms, corresponding to the 1
part of the name.
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The Information We Want

A class of objects

Morphisms between objects,
2-morphisms between morphisms,
3-morphisms between 4-morphisms and
so forth. This explains why there is an
∞ in the name

Morphisms can be composed in an
associative and unital way.

Higher morphisms (2-morphisms,
3-morphisms and so forth) should be
invertible at least up to higher
morphisms, corresponding to the 1 part
of the name.



hard to make precise
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The Idea...

Recall the following principle in higher category theory known as the
homotopy hypothesis:

Spaces and ∞-groupoids should be the same
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The Idea...

Use ”simplicial models for spaces”, called Kan complexes.
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The Idea...

Use ”simplicial models for spaces”, called Kan complexes.

In this framework, we would like to formalise ∞-categories

We will do so by defining ∞-categories as simplicial sets satisfying certain ”horn extension

properties”

Now ∞-groupoids should be the same as Kan complexes (by the homotopy
hypothesis).
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The Idea...

Use ”simplicial models for spaces”, called Kan complexes.

In this framework, we would like to formalise ∞-categories

We will do so by defining ∞-categories as simplicial sets satisfying certain ”horn extension

properties”

Now ∞-groupoids should be the same as Kan complexes (by the homotopy
hypothesis).

With this approach to ∞-categories we get a model for the fundamental ∞-groupoid

It turns out to be the singular complex Sing(X )
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The Plan...

1 Introduction

2 Basics of ∞-categories
Some Basics of Simplicial Sets
The Definition of an ∞-category
Making the Plan Precise

3 What Next?
Constructions on ∞-categories
Higher Algebra
Goodwillie Calculus
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Some Basics of Simplicial Sets

Definition

Recall that ∆ is the simplicial category:

Objects are given by totally ordered sets [n] = {1, 2, . . . n}, n ∈ N
Order preserving functions [n]→ [m] as morphisms
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The Simplicial Category and Simplicial Sets

Definition

Recall that ∆ is the simplicial category:

Objects are given by totally ordered sets [n] = {1, 2, . . . n}, n ∈ N
Order preserving functions [n]→ [m] as morphisms

We denote by sSet the category of simplicial sets, given by Fun(∆op,Set)
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The Simplicial Category and Simplicial Sets

Definition

Recall that ∆ is the simplicial category:

Objects are given by totally ordered sets [n] = {1, 2, . . . n}, n ∈ N
Order preserving functions [n]→ [m] as morphisms

We denote by sSet the category of simplicial sets, given by Fun(∆op,Set)

Dually, we denote by cSet the category of cosimplicial sets, given by

Fun(∆,Set)
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Face and Degeneracy Maps

Definition

We may define the maps:

d i : [n − 1]→ [n] 0 ≤ i ≤ n (called the face maps)

s j : [n]→ [n − 1] 0 ≤ j ≤ n (called the degeneracy maps)

as follows:

d i is the unique map injective map which skips i in its image

s j is the unique surjection which includes the value j twice
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Face and Degeneracy Maps

Definition

We may define the maps:

d i : [n − 1]→ [n] 0 ≤ i ≤ n (called the face maps)

s j : [n]→ [n − 1] 0 ≤ j ≤ n (called the degeneracy maps)

as follows:

d i is the unique map injective map which skips i in its image

s j is the unique surjection which includes the value j twice

Exercise: come up with an explicit description of d i and s j using piecewise

functions.
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n-Simplices

Definition

If X∗ is a simplicial set, then the elements of X ([n]) = Xn ∈ Set are called
n-simplices.
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n-Simplices

Definition

If X∗ is a simplicial set, then the elements of X ([n]) = Xn ∈ Set are called
n-simplices.

We write di = X (d i )
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n-Simplices

Definition

If X∗ is a simplicial set, then the elements of X ([n]) = Xn ∈ Set are called
n-simplices.

We write di = X (d i )

We write sj = X (s j)

Gregor Sanfey Introduction to ∞-Categories March 2021 26 / 100



The Data of Simplicial Sets

We may use face and degeneracy maps to rewrite the definition of a
simplicial set:

Theorem

A simplicial set X∗ is a collection of sets Xn along with maps
di : Xn → Xn−1 and si : Xn → Xn+1 such that they satisfy:

didj = dj−1di if i < j

di sj = sj−1di if i < j

di sj = sjdi−1 if i > j + 1

si sj = sj+1si if i ≤ j

djsj = dj+1sj = 1


simplicial identities
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The Standard n-simplex

Definition

We denote by ∆n ∈ sSet the standard n-simplex, given by Hom∆(−, [n])
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The Standard n-simplex

Definition

We denote by ∆n ∈ sSet the standard n-simplex, given by Hom∆(−, [n])

We denote by ιn the identity 1[n] ∈ Hom([n], [n])

We denote by ∂∆n the boundary of ∆n, given by the smallest
subcomplex of ∆n which contains all the faces dj(ιn) of ∆n.
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The Standard n-simplex

Definition

We denote by ∆n ∈ sSet the standard n-simplex, given by Hom∆(−, [n])

We denote by ιn the identity 1[n] ∈ Hom∆([n], [n])

We denote by ∂∆n the boundary of ∆n, given by the smallest
subcomplex of ∆n which contains all the faces dj(ιn) of ∆n.

The kth n-horn Λn
k ⊂ ∆n is given informally by the category

generated by all faces dj(ιn) except dk(ιn).
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The Standard n-simplex

Definition

We denote by ∆n ∈ sSet the standard n-simplex, given by Hom∆(−, [n])

We denote by ιn the identity 1[n] ∈ Hom∆([n], [n])

We denote by ∂∆n the boundary of ∆n, given by the smallest
subcomplex of ∆n which contains all the faces dj(ιn) of ∆n.

The kth n-horn Λn
k ⊂ ∆n is given informally by the category

generated by all faces dj(ιn) except dk(ιn).

More precisely, the kth n-horn is given by the coequaliser:⊔
0≤i<j≤n

∆n−2 ⇒
⊔
i 6=k

∆n−1 → Λn
k
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Examples of Horns for n = 2

A typical example of horns are Λ2
k for 0 ≤ k ≤ 2.
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Examples of Horns for n = 2

A typical example of horns are Λ2
k for 0 ≤ k ≤ 2.

∆2 =

1

0 2
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Examples of Horns for n = 2

A typical example of horns are Λ2
k for 0 ≤ k ≤ 2.

∆2 =

1

0 2

Λ2
0 =

1

0 2

⊂ ∆2
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Examples of Horns for n = 2

A typical example of horns are Λ2
k for 0 ≤ k ≤ 2.

∆2 =

1

0 2

Λ2
0 =

1

0 2

⊂ ∆2

Exercise: similarly represent Λ2
k for k = 1, 2
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The Nerve Functor

Given a category C, one can form the simplicial set N(C) ∈ sSet
called the nerve of the category.
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The Nerve Functor

Given a category C, one can form the simplicial set N(C) ∈ sSet
called the nerve of the category.

Definition

By definition, we have that N(C)n = Fun([n], C)

Gregor Sanfey Introduction to ∞-Categories March 2021 37 / 100



The Nerve Functor

Given a category C, one can form the simplicial set N(C) ∈ sSet
called the nerve of the category.

Definition

By definition, we have that N(C)n = Fun([n], C)

The nerve functor N : Cat → sSet is fully faithful, hence includes an

equivalence of categories on its essential image.
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The Nerve Functor

Given a category C, one can form the simplicial set N(C) ∈ sSet
called the nerve of the category.

Definition

By definition, we have that N(C)n = Fun([n], C)

The nerve functor N : Cat → sSet is fully faithful, hence includes an

equivalence of categories on its essential image.

In order to study the essential image, we will exploit certain ”horn extension

properties” of the nerve functor.
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The Horn Extension Properties of the Nerve

We now motivate the definition of an ∞-category a little bit more by
giving the horn extension properties of the nerve
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The Horn Extension Properties of the Nerve

We now motivate the definition of an ∞-category a little bit more by
giving the horn extension properties of the nerve

Writing cm for the image of m under a horn α : Λn
k → N(C) makes

the horns α : Λ2
k → N(C) for 0 ≤ k ≤ 2 respectively look like:

c0

c2 c1

fh

c0

c2 c1

f

g

c0

c2 c1g

h
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The Horn Extension Properties of the Nerve

We now motivate the definition of an ∞-category a little bit more by
giving the horn extension properties of the nerve

Writing cm for the image of m under a horn α : Λn
k → N(C) makes

the horns α : Λ2
k → N(C) for 0 ≤ k ≤ 2 respectively look like:

c0

c2 c1

fh

c0

c2 c1

f

g

c0

c2 c1g

h

Using the composition h = g ◦ f , we see that any horn Λ2
1 → N(C)

extends uniquely to a 2-simplex σ : ∆2 → N(C).

∆2

Λ2
1 N(C)α

∃!σ
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Inner and Outer Horns

Quick remark: the horns Λn
k 0 < k < n are called inner horns, whereas Λn

0

and Λn
n are called outer horns.

Theorem

Let X be a simplicial set.

We have an isomorphism X ∼= N(C) C ∈ Cat iff every inner horn
Λn
k → N(C) can be uniquely extended to an n-simplex ∆n → X

We have an isomorphism G ∼= N(G) G ∈ Grpd iff every horn
Λn
k → N(C) can be uniquely extended to an n-simplex ∆n → X
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Inner and Outer Horns

Quick remark: the horns Λn
k 0 < k < n are called inner horns, whereas Λn

0

and Λn
n are called outer horns.

Theorem

Let X be a simplicial set.

We have an isomorphism X ∼= N(C) C ∈ Cat iff every inner horn
Λn
k → N(C) can be uniquely extended to an n-simplex ∆n → X

We have an isomorphism G ∼= N(G) G ∈ Grpd iff every horn
Λn
k → N(C) can be uniquely extended to an n-simplex ∆n → X

The characterisation of the essential image of the nerve functor

N : Grpd → sSet inspires the definition of a Kan complex:
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Kan Complexes

Definition

A simplicial set X is said to be a Kan complex if every horn Λn
k → X for

0 ≤ k ≤ n can be extended to an n-simplex ∆n → X
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Kan Complexes

Definition

A simplicial set X is said to be a Kan complex if every horn Λn
k → X for

0 ≤ k ≤ n can be extended to an n-simplex ∆n → X

Denoting by Kan ⊂ sSet the full subcategory spanned by Kan complexes,
we have a diagram of fully faithful functors:

Grpd Cat

Kan sSet

NN
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Defining an ∞-category

We arrive at the following definition:

Definition

We say that a simplicial set C is an ∞-category if every inner horn Λn
k → C

can be extended to an n-simplex ∆n → C.
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Defining an ∞-category

We arrive at the following definition:

Definition

We say that a simplicial set C is an ∞-category if every inner horn Λn
k → C

can be extended to an n-simplex ∆n → C.

Both Kan complexes and nerves of categories satisfy horn extension

properties, but there are two big differences
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Defining an ∞-category

We arrive at the following definition:

Definition

We say that a simplicial set C is an ∞-category if every inner horn Λn
k → C

can be extended to an n-simplex ∆n → C.

Both Kan complexes and nerves of categories satisfy horn extension

properties, but there are two big differences

First, for Kan complexes, all horns can be extended, whereas for nerves this

is only the case for inner horns.
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Defining an ∞-category

We arrive at the following definition:

Definition

We say that a simplicial set C is an ∞-category if every inner horn Λn
k → C

can be extended to an n-simplex ∆n → C.

Both Kan complexes and nerves of categories satisfy horn extension

properties, but there are two big differences

First, for Kan complexes, all horns can be extended, whereas for nerves this

is only the case for inner horns.

For Kan complexes, the mere existence of such and extension is required,

whereas for nerves this extension must be unique. For our definition of

∞-categories, mere existence is all that is necessary, since we would like all

the choices of compositions that exist to be ”homotopically irrelavent”,

similar to concatinating paths in a space X .
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Examples of ∞-categories

I give some simple examples of ∞-categories now:
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Examples of ∞-categories

I give some simple examples of ∞-categories now:

Any Kan complex will be an ∞-category. Therefore for any space X ,
it’s singular complex Sing(X ) is an ∞-category. This is one
description of the fundamental ∞-groupoid as said before.
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Examples of ∞-categories

I give some simple examples of ∞-categories now:

Any Kan complex will be an ∞-category. Therefore for any space X ,
it’s singular complex Sing(X ) is an ∞-category. This is one
description of the fundamental ∞-groupoid as said before.

One thing one can say is that all categories should be ∞-categories
too, since all higher morphisms can be given by the identity. While
this is in some sense ”cheating”, it is not wrong. The nerve makes
this idea precise- identifying a category C to its nerve N(C), allows us
to studying categories as a special case of higher category theory.
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Morphisms in ∞-categories

C is an ∞-category:

The objects of C are given by the vertices x0 ∈ C0
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Morphisms in ∞-categories

C is an ∞-category:

The objects of C are given by the vertices x0 ∈ C0

The 1-simplices f ∈ C1 are morphisms
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Morphisms in ∞-categories

C is an ∞-category:

The objects of C are given by the vertices x0 ∈ C0

The 1-simplices f ∈ C1 are morphisms

The face map s = d1 : C1 → C0 is called the source map
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Morphisms in ∞-categories

C is an ∞-category:

The objects of C are given by the vertices x0 ∈ C0

The 1-simplices f ∈ C1 are morphisms

The face map s = d1 : C1 → C0 is called the source map
The map d0 : C1 → C0 is called the target map.
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Morphisms in ∞-categories

C is an ∞-category:

The objects of C are given by the vertices x0 ∈ C0

The 1-simplices f ∈ C1 are morphisms

The face map s = d1 : C1 → C0 is called the source map
The map d0 : C1 → C0 is called the target map.
As is normal category theory, we write f : x → y if s(f ) = x and
t(f ) = y . To be extremely precise, we write homC(x , y) as the pullback

homC(x , y) C1

∗ C0 × C0
(x,y)

(s,t)
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Morphisms in ∞-categories

C is an ∞-category:

The objects of C are given by the vertices x0 ∈ C0

The 1-simplices f ∈ C1 are morphisms

The face map s = d1 : C1 → C0 is called the source map
The map d0 : C1 → C0 is called the target map.
As is normal category theory, we write f : x → y if s(f ) = x and
t(f ) = y . To be extremely precise, we write homC(x , y) as the pullback

homC(x , y) C1

∗ C0 × C0
(x,y)

(s,t)

We write s0 : C0 → C1, x 7→ idx = s0(x) for the identity map
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Homotopies in ∞-categories

We write ∂σ = (d0σ, . . . , dnσ) for the boundary of an n-simplex

Definition

We say that two morphisms f , g : x → y are homotopic if there is a two
simplex σ : ∆2 → C with boundary ∂σ = (g , f , idx); so the boundary looks
like:

x

x y

idx g

f

Gregor Sanfey Introduction to ∞-Categories March 2021 60 / 100



Homotopy is an Equivalence Relation

Theorem

In an ∞-category C, homotopy is an equivalence relation on homC(x , y)
where x , y ∈ C.
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Homotopy is an Equivalence Relation

Theorem

In an ∞-category C, homotopy is an equivalence relation on homC(x , y)
where x , y ∈ C.

Proof.
First we show that f ' f . Consider an edge f : ∆1 → C. Then there are 2-simplices σ, σ′ such that d0(σ) and d2(σ′) are
degenerate.

1

σ′

0 2

d2 f

f

1

σ

0 2

f d0

f

Note that d1(σ) = d2(σ) = f and d0(σ′) = d1(σ′) = f and so

s0(f ) = σ, s1(f ) = σ
′ =⇒ f ' f
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Proof of Symmetry

Proof.
Let σ : f ' g be a homotopy and by the previous part of the proof there is a homotopy hf : f ' f , so we have:

3

hf 1

σ

0 2

f

d3

g

f d1

d2

One can see that σ̃ = d1 : g ' f is our desired homotopy.
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Proof of Transitivity

Proof.
Observe that symmetry in this case is just a special case of the proof of transitivity; replacing hf : f ' f with σ : f ' g and
σ : f ' g with σ′ : g ' h, we get:

3

σ′ 1

σ

0 2

f

d3

g

h d1

d2
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Compositions of Morphisms

Definition

Let f : x → y and g : y → z be morphisms in an arbitrary ∞-category C.
Then, to compose these two morphisms to form an inner horn in C

λ = (g , •, f ) : Λ2
1 → C

such that d0λ = g and d2λ = f . Any such horn can be non-uniquely
extended to a 2-simplex σ : ∆2 → C. The new face of σ, d1(σ) is called a
candidate composition of g and f .
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Compositions of Morphisms

Definition

Let f : x → y and g : y → z be morphisms in an arbitrary ∞-category C.
Then, to compose these two morphisms to form an inner horn in C

λ = (g , •, f ) : Λ2
1 → C

such that d0λ = g and d2λ = f . Any such horn can be non-uniquely
extended to a 2-simplex σ : ∆2 → C. The new face of σ, d1(σ) is called a
candidate composition of g and f .

1

σ′

0 2

f g

d1(σ)
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Some Notes About This

Clearly this is very different from normal category theory, because we
don’t require our candidate composition to be unique.
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Some Notes About This

Clearly this is very different from normal category theory, because we
don’t require our candidate composition to be unique.

To re-emphasise, we only require in higher category theory that all of
these candidate compositions are weakly equivalent in the homotopy
theoretic sense.
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Some Notes About This

Clearly this is very different from normal category theory, because we
don’t require our candidate composition to be unique.

To re-emphasise, we only require in higher category theory that all of
these candidate compositions are weakly equivalent in the homotopy
theoretic sense.

We shall now form the homotopy category Ho(C) of an ∞-category,
and show that it is well defined.

Gregor Sanfey Introduction to ∞-Categories March 2021 69 / 100



The Homotopy Category of an ∞-category

Now that we have a well defined homotopy relation, we may form the
homotopy category Ho(C) of an ∞-category by passing everything to
homotopy classes.
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The Homotopy Category of an ∞-category

Now that we have a well defined homotopy relation, we may form the
homotopy category Ho(C) of an ∞-category by passing everything to
homotopy classes.

Various things must be verified in order to show that Ho(C) is well
defined, but the main one is to show that every candidate
composition of two morphisms are indeed homotopic.
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The Homotopy Category is Well Defined

Theorem

Given two morphisms f : x → y and g : y → z with two 2-simplices
σ, σ′ : ∆2 → C along with h = d1(σ) and h′ = d1(σ′). Seeing that h, h′ are
both candidate compositions of f and g, h ' h′.
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Proof

Proof.
Consider the diagram, where the extension property of ∞-categories guarantees that we may extend the horn λ : Λ3

1 → C
which is pictured with the solid arrows to a 3-simplex τ : ∆3 → C pictured:

3

σ′ 1

σ

0 2

h′

f

h

g

g

d1

Clearly, d1(τ) : h ' h′ is a homotopy.
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The Definition of the Homotopy Category

Definition

Let C be an ∞-category. Then there is an ordinary category Ho(C), called
the homotopy category of C, with:

Ob(Ho(C)) = Ob(C)

Morphisms are given by homotopy classes of maps in C. The
composition and identites respectively are:

[g ] ◦ [f ] = [g ◦ f ], where g ◦ f is an arbitrary candidate composition.
idx = [idx ] = [s0(x)]
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The Plan is Finally Coming Together...

Now we are finally in a position to make our original plan precise!
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The Plan is Finally Coming Together...

Now we are finally in a position to make our original plan precise!

Our first principle which we want is that:

A composition of f and g exists
Any two choices of compositions are homotopic; the space of such
compositions has trivial π0.
The homotopies that compare the two choices are also homotopic
(trivial π1)
And so forth (trivial πi , i > 2)
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Now we are finally in a position to make our original plan precise!

Our first principle which we want is that:

A composition of f and g exists
Any two choices of compositions are homotopic; the space of such
compositions has trivial π0.
The homotopies that compare the two choices are also homotopic
(trivial π1)
And so forth (trivial πi , i > 2)

We want morphisms of higher dimensions. If {i0, . . . , ik} ∈ ∆n are
vertices, then we may denote by ∆{i0,...ik} the k-simplex of ∆n spanned by
the vertices {i0, . . . , ik} then:

An n-morphism from x → y is given by a map of simplicial sets
τ : ∆n+1 → C such that τ |∆{0,...,n} = x and τ |∆{n+1} = y
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Making The Plan Precise

To convince ourselves that we have done the first part, consider the
following theorem of Joyal:

Theorem

A simplicial set X is an ∞-category iff the restriction map

i∗ : Map(∆2,X )→ Map(Λ2
1,X )

is an acylic Kan fibration.
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Making the Plan Precise

Let us now unpack this theorem a bit:
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Making the Plan Precise

Let us now unpack this theorem a bit:

We may think of Map(Λ2
1,X ) as the space of all composition

problems, whereas Map(∆2,X ) is the space of all solutions to the
composition problems.
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Let us now unpack this theorem a bit:

We may think of Map(Λ2
1,X ) as the space of all composition

problems, whereas Map(∆2,X ) is the space of all solutions to the
composition problems.

What the theorem tells us is that the defining feature of an
∞-category is that these two spaces are homotopically equivalent.
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Making the Plan Precise

Let us now unpack this theorem a bit:

We may think of Map(Λ2
1,X ) as the space of all composition

problems, whereas Map(∆2,X ) is the space of all solutions to the
composition problems.

What the theorem tells us is that the defining feature of an
∞-category is that these two spaces are homotopically equivalent.

Moreover, if we have two morphisms f : x → y and g : y → z which
are composible in an ∞-category C, then we can form the associated
horn

λ = (g ,−, f ) : Λ2
1 → C

which is just a vertex ∆0 → Map(Λ2
1, C). Then the fiber Fλ of i∗ over

the vertex, which may be thought of as the space of all possible
compositions of g and f which, by the theorem is a contractible Kan
complex, which tells us the information we wanted in the first
condition.
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Equivalences in an ∞-category

Now, we may just say composition instead of ”candidate composition”.
We can now deal with equivalences in an ∞-category C:

Definition

A morphism f : x → y in C is an equivalence if [f ] : x → y is an
isomorphism in Ho(C)
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Back to Groupoids and the Homotopy Hypothesis...

Recall the homotopy hypothesis in the introduction which says that
∞-groupoids should come from spaces. First, we need a definition of an
∞-groupoid:

Definition

An ∞-category is an ∞-groupoid if the homotopy category is a groupoid.
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Back to Groupoids and the Homotopy Hypothesis...

Recall the homotopy hypothesis in the introduction which says that
∞-groupoids should come from spaces. First, we need a definition of an
∞-groupoid:

Definition

An ∞-category is an ∞-groupoid if the homotopy category is a groupoid.

The following result of Joyal says that all horns can be extended for an

∞-category as soon as certain maps are equivalences:
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Back to Groupoids and the Homotopy Hypothesis...

Recall the homotopy hypothesis in the introduction which says that
∞-groupoids should come from spaces. First, we need a definition of an
∞-groupoid:

Definition

An ∞-category is an ∞-groupoid if the homotopy category is a groupoid.

The following result of Joyal says that all horns can be extended for an

∞-category as soon as certain maps are equivalences:

Theorem

Let C be an ∞-category. Any horn λ : Λn
0 → C , n ≥ 2 such that λ|∆{0,1}

can be extended to a simplex ∆n → C. A similar statement can be given
for Λn

n
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Some Closing Remarks:

We have a corollary now which corresponds perfectly with the homotopy
hypothesis:

Corollary

An ∞-category is an ∞-groupoid iff it is a Kan complex

Therefore, we can refine our original diagram of faithful functors to be:

Grpd Cat

Kan = Grpd∞ Cat∞ sSet

NN

N
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The Plan...

1 Introduction

2 Basics of ∞-categories
Some Basics of Simplicial Sets
The Definition of an ∞-category
Making the Plan Precise

3 What Next?
Constructions on ∞-categories
Higher Algebra
Goodwillie Calculus
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On Constructions on ∞-categories

In the next slides, I shall give a very rough overview of the types of
things which one can do, having a precise model of the
(∞, 1)-category.

Gregor Sanfey Introduction to ∞-Categories March 2021 89 / 100



On Constructions on ∞-categories

In the next slides, I shall give a very rough overview of the types of
things which one can do, having a precise model of the
(∞, 1)-category.
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On Constructions on ∞-categories

In the next slides, I shall give a very rough overview of the types of
things which one can do, having a precise model of the
(∞, 1)-category.

The most natural thing to talk about are 1-categorical constructions
on ∞-categories.

These have been studied ,of course, and now we may speak
comfortably about (co)limits in ∞-categories
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On Constructions on ∞-categories

In the next slides, I shall give a very rough overview of the types of
things which one can do, having a precise model of the
(∞, 1)-category.

The most natural thing to talk about are 1-categorical constructions
on ∞-categories.

These have been studied ,of course, and now we may speak
comfortably about (co)limits in ∞-categories. These are an important
topic in 1-category theory, so it is natural to study them in an
∞-categorical setting too.
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Overview of Higher Algebra

One of the main objects in higher algebra are called E∞-rings.
Roughly, what they are are a space X which satisfy the ring axioms
up to coherent homotopy.
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Overview of Higher Algebra

One of the main objects in higher algebra are called E∞-rings.
Roughly, what they are are a space X which satisfy the ring axioms
up to coherent homotopy.

E∞-rings can be thought of as playing the same role in stable
homotopy theory as commutative rings do in algebra.
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Overview of Higher Algebra

One of the main objects in higher algebra are called E∞-rings.
Roughly, what they are are a space X which satisfy the ring axioms
up to coherent homotopy.

E∞-rings can be thought of as playing the same role in stable
homotopy theory as commutative rings do in algebra.

The collection of all spectra can be arranged into an ∞-category,
which can be thought of as the ∞-categorical version of abelian
groups. The tensor product on abelian groups has the analogue of the
smash product.
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Overview of Higher Algebra

One of the main objects in higher algebra are called E∞-rings.
Roughly, what they are are a space X which satisfy the ring axioms
up to coherent homotopy.

E∞-rings can be thought of as playing the same role in stable
homotopy theory as commutative rings do in algebra.

The collection of all spectra can be arranged into an ∞-category,
which can be thought of as the ∞-categorical version of abelian
groups. The tensor product on abelian groups has the analogue of the
smash product.

One may, for example, introduce the notion of a stable ∞-category,
which is essentially an axiomisation of the essential principle in stable
homotopy theory which is that fiber sequences and cofiber sequences
are the same. Furthermore, the ∞-category of spectra are an example
of an ∞-category.
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Overview of Goodwillie Calculus

Goodwillie calculus is a categorification of Newton and Leibniz’
differential calculus, used to study functors that arise in topology
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Overview of Goodwillie Calculus

Goodwillie calculus is a categorification of Newton and Leibniz’
differential calculus, used to study functors that arise in topology

The theory starts with the categorification of polynomial functions,
called n-excisive functors, PnF . Goodwillie established that every
homotopy functor F has a universal approximation by these functors.
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Overview of Goodwillie Calculus

Goodwillie calculus is a categorification of Newton and Leibniz’
differential calculus, used to study functors that arise in topology

The theory starts with the categorification of polynomial functions,
called n-excisive functors, PnF . Goodwillie established that every
homotopy functor F has a universal approximation by these functors.

For example, it turns out that 1-excisive functors represent
generalised homology theories (roughly). Consider F = I , the identity
functor on the category of based spaces. In the Goodwillie calculus,
this functor is highly nontrivial; P1I (X ) = Ω∞Σ∞X . It represents
stable homotopy theory in the sense that π∗(P1I (X )) ∼= πs∗(X ). As
you climb higher up the tower PnI (X ), it will interlope between stable
and unstable homotopy theory, satisfying various higher versions of
the excision axiom.
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Thank you for watching!
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