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Following the notation used by Lurie, | shall be denoting by the models of
(00, 1)-categories in these slides by co-categories.
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© Basics of co-categories

@ Some Basics of Simplicial Sets
@ The Definition of an oo-category
o Making the Plan Precise

© What Next?

@ Higher Algebra

@ Goodwillie Calculus
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o Constructions on oco-categories



The Fundamental groupoid

Before | begin the talk, | would like to start off by giving a rough sketch of
the fundamental oco-groupoid.

Definition

Recall that the fundamental groupoid of a space X 7<1(X) is a groupoid,
whose objects are points in X and whose morphisms are homotopy classes
of paths x — y relative to basepoints.
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Recall that the fundamental groupoid of a space X m<1(X) is a groupoid,
of paths x — y relative to basepoints.

whose objects are points in X and whose morphisms are homotopy classes

@ This is a groupoid, since all paths admit an inverse up to homotopy.
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Recall that the fundamental groupoid of a space X m<1(X) is a groupoid,
of paths x — y relative to basepoints.

whose objects are points in X and whose morphisms are homotopy classes

@ This is a groupoid, since all paths admit an inverse up to homotopy.

@ However, it discards a lot of information. A better version is the
fundamental co-groupoid, m<oo(X)
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Description of the Fundamental oo-groupoid

Roughly, we construct the fundamental co-groupoid of a space X,
T<oo(X) as follows:

@ Objects are given by points in X
@ Morphisms are paths x — y
@ 2-morphisms are given by homotopies between these paths

@ Higher morphisms are given by higher homotopies
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@ Objects are given by points in X

@ Morphisms are paths x — y

@ 2-morphisms are given by homotopies be-

tween these paths > Invertible in a weak sense

@ Higher morphisms are given by higher ho-
motopies
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Introduction

o Category theory is a very useful language, but it certain limitations.

@ In mathematics, we often would like to identify two objects which are
not isomorphic, but "weakly equivalent” in the homotopy theoretic
sense.

@ For example, in homological algebra it is desirable to consider chain
complexes up to quasi isomorphism. Furthermore in homotopy theory,
we also would like to consider weakly homotopic spaces as isomorphic.
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Weak Equivalences

Convenient languages for a pair (C, W) of a category along with a class of
morphisms called weak equivalences which we also want to be thought of
as isomorphisms have been searched for. These include:

@ Model categories

@ Derivators

o Simplicial Categories
@ Topological categories
o

oo-categories
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@ Model categories
@ Derivators

@ Simplicial Categories
@ Topological categories

@ oo-categories

All part the theory of (oo, 1)-categories
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The Information We Want

We would like certain information in an (oo, 1)-category:
@ A class of objects

@ Morphisms between objects, 2-morphisms between morphisms,
3-morphisms between 2-morphisms and so forth. This explains why
there is an oo in the name

@ Morphisms can be composed in an associative and unital way.

@ Higher morphisms (2-morphisms, 3-morphisms and so forth) should
be invertible, at least up to higher morphisms, corresponding to the 1
part of the name.
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The Information We Want

A class of objects

Morphisms between objects,
2-morphisms between morphisms,
3-morphisms between 4-morphisms and
so forth. This explains why there is an
o0 in the name

Morphisms can be composed in an
associative and unital way.

Higher morphisms (2-morphisms,
3-morphisms and so forth) should be
invertible at least up to higher
morphisms, corresponding to the 1 part
of the name.
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Recall the following principle in higher category theory known as the
homotopy hypothesis:

Spaces and oo-groupoids should be the same
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Use "simplicial models for spaces”, called Kan complexes.
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Use "simplicial models for spaces”, called Kan complexes.

@ In this framework, we would like to formalise co-categories
properties”

hypothesis).

@ We will do so by defining co-categories as simplicial sets satisfying certain " horn extension

Now oo-groupoids should be the same as Kan complexes (by the homotopy
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Use "simplicial models for spaces”, called Kan complexes.

properties”

hypothesis).

@ In this framework, we would like to formalise co-categories

@ We will do so by defining co-categories as simplicial sets satisfying certain " horn extension

Now oo-groupoids should be the same as Kan complexes (by the homotopy

@ With this approach to co-categories we get a model for the fundamental co-groupoid
It turns out to be the singular complex Sing(X)

J
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o Introduction

e Basics of oco-categories
@ Some Basics of Simplicial Sets

@ The Definition of an co-category
@ Making the Plan Precise

Q What Next?

@ Constructions on co- categories
@ Higher Algebra
@ Gooduwillie Calculus
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Recall that A is the simplicial category:

e Order preserving functions [n] — [m] as morphisms
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@ Objects are given by totally ordered sets [n] = {1,2,...n},n €N




Recall that A is the simplicial category:

@ Objects are given by totally ordered sets [n] = {1,2,...n},n e N
@ Order preserving functions [n] — [m] as morphisms

@ We denote by sSet the category of simplicial sets, given by Fun(A°P, Set)
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The Simplicial Category and Simplicial Sets

Definition

Recall that A is the simplicial category:
@ Objects are given by totally ordered sets [n] = {1,2,...n},n €N
@ Order preserving functions [n] — [m] as morphisms

@ We denote by sSet the category of simplicial sets, given by Fun(A°P, Set)

@ Dually, we denote by cSet the category of cosimplicial sets, given by
Fun(A, Set)
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Face and Degeneracy Maps

Definition
We may define the maps:
o d':[n—1] — [n] 0 < i < n(called the face maps)
e s/ :[n] = [n—1]0 < j < n(called the degeneracy maps)
as follows:
e d' is the unique map injective map which skips i in its image

e s/ is the unique surjection which includes the value j twice
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Face and Degeneracy Maps

Definition
We may define the maps:
o d':[n—1] — [n] 0 <i < n(called the face maps)
e s/ :[n] = [n—1]0 < j < n(called the degeneracy maps)
as follows:
e d' is the unique map injective map which skips i in its image

e s/ is the unique surjection which includes the value j twice

@ Exercise: come up with an explicit description of d’ and s/ using piecewise

functions.
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n-simplices.

If X, is a simplicial set, then the elements of X([n]) = X, € Set are called
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n-simplices.

If X, is a simplicial set, then the elements of X([n]) = X,, € Set are called
@ We write d; = X(d")
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n-simplices.

@ We write d; = X(d')

@ We write 5; = X(s)
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The Data of Simplicial Sets

We may use face and degeneracy maps to rewrite the definition of a
simplicial set:

Theorem

A simplicial set X, is a collection of sets X,, along with maps

di : Xp — Xp—1 and s; : X, — Xp41 such that they satisfy:
d,'dj = J'_ld,' ifi <j
d,'Sj = Sj_1d,' if i <j
disj =sjdi_1 ifi>j+1 simplicial identities
SiSj = Sj+1Si ifi<j

djsj = dj+15 =1
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We denote by A" € sSet the standard n-simplex, given by Homa(—, [n])
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We denote by A" € sSet the standard n-simplex, given by Homa(—, [n]) '
e We denote by ¢, the identity 1j,; € Hom([n],[n])
e We denote by A" the boundary of A", given by the smallest

subcomplex of A” which contains all the faces dj(c,) of A".
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We denote by A" € sSet the standard n-simplex, given by Homa(—, [n]) '
e We denote by ¢, the identity 1j,) € Homa([n], [n])
@ We denote by A" the boundary of A", given by the smallest

subcomplex of A" which contains all the faces dj(¢,) of A”.

@ The kth n-horn A] C A" is given informally by the category
generated by all faces dj(tn) except di(cn).
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The Standard n-simplex

Definition

We denote by A" € sSet the standard n-simplex, given by Homa(—, [n]) J

e We denote by ¢, the identity 1j,; € Homa([n], [n])

@ We denote by A" the boundary of A”, given by the smallest
subcomplex of A" which contains all the faces dj(¢,) of A".

@ The kth n-horn A} C A" is given informally by the category
generated by all faces dj(v,) except di(¢n).

@ More precisely, the kth n-horn is given by the coequaliser:

|| am?=||art—A;
0<i<j<n i#k

Gregor Sanfey Introduction to co-Categories March 2021
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A typical example of horns are /\%( for0 < k <2
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A typical example of horns are /\,2( for0 < k <2,

1
o A2 — /’ \
O——— 2
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A typical example of horns are /\,2( for 0 < k < 2.

1
o A2 — /’ \
O————— 2
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A typical example of horns are /\,2( for 0 < k < 2.
1
o A2 — /’ \
0Oo—Mm——— 2
1
o N2 = / \ c A?
0 2

@ Exercise: similarly represent A? for k = 1,2
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called the nerve of the category.

e Given a category C, one can form the simplicial set N(C) € sSet
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called the nerve of the category.

e Given a category C, one can form the simplicial set N(C) € sSet
By definition, we have that N(C), = Fun([n],C) I
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@ Given a category C, one can form the simplicial set N(C) € sSet
called the nerve of the category.

By definition, we have that N(C), = Fun([n],C) '
@ The nerve functor N : Cat — sSet is fully faithful, hence includes an
equivalence of categories on its essential image.
«AO> «F)>r «=)r « =) = Q>
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@ Given a category C, one can form the simplicial set N(C) € sSet
called the nerve of the category.

By definition, we have that N(C), = Fun([n],C)

@ The nerve functor N : Cat — sSet is fully faithful, hence includes an
equivalence of categories on its essential image.

@ In order to study the essential image, we will exploit certain "horn extension
properties” of the nerve functor.
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We now motivate the definition of an oco-category a little bit more by
giving the horn extension properties of the nerve
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The Horn Extension Properties of the Nerve

We now motivate the definition of an co-category a little bit more by
giving the horn extension properties of the nerve

e Writing ¢, for the image of m under a horn o : A} — N(C) makes
the horns o : A2 — N(C) for 0 < k < 2 respectively look like:

NN

C1 (@) % C1 Co <— C1
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The Horn Extension Properties of the Nerve

We now motivate the definition of an oco-category a little bit more by
giving the horn extension properties of the nerve

e Writing ¢y, for the image of m under a horn o : A} — N(C) makes
the horns o : A2 — N(C) for 0 < k < 2 respectively look like:

1)
C Cc1 (&} % a (&) <— a

@ Using the composition h = g o f, we see that any horn A2 — N(C)
extends uniquely to a 2-simplex o : A2 — N(C).

N

A

/ Jio

A —— N(C)
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Inner and Outer Horns

@ Quick remark: the horns A} 0 < k < n are called inner horns, whereas Aj

and A} are called outer horns.

Theorem

Let X be a simplicial set.
e We have an isomorphism X = N(C) C € Cat iff every inner horn
A} — N(C) can be uniquely extended to an n-simplex A" — X

e We have an isomorphism G = N(G) G € Grpd iff every horn
A} — N(C) can be uniquely extended to an n-simplex A" — X
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Inner and Outer Horns

@ Quick remark: the horns A} 0 < k < n are called inner horns, whereas Aj

and A} are called outer horns.

Theorem
Let X be a simplicial set.
e We have an isomorphism X = N(C) C € Cat iff every inner horn
A} — N(C) can be uniquely extended to an n-simplex A" — X

e We have an isomorphism G = N(G) G € Grpd iff every horn
A} — N(C) can be uniquely extended to an n-simplex A" — X

@ The characterisation of the essential image of the nerve functor
N : Grpd — sSet inspires the definition of a Kan complex:
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A simplicial set X is said to be a Kan complex if every horn A} — X for
0 < k < n can be extended to an n-simplex A" — X

«O>» «(Fr «Zr «E» = Q>




A simplicial set X is said to be a Kan complex if every horn A7 — X for
0 < k < n can be extended to an n-simplex A" — X

@ Denoting by Kan C sSet the full subcategory spanned by Kan complexes,
we have a diagram of fully faithful functors:
Grpd — Cat

|

Kan —— sSet
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We arrive at the following definition:

can be extended to an n-simplex A" — C.

We say that a simplicial set C is an ~c-category if every inner horn A} — C
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We arrive at the following definition:

can be extended to an n-simplex A" — C.

@ Both Kan complexes and nerves of categories satisfy horn extension
properties, but there are two big differences
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We say that a simplicial set C is an ~c-category if every inner horn A} — C




We arrive at the following definition:

We say that a simplicial set C is an ~c-category if every inner horn A} — C
can be extended to an n-simplex A" — C.

@ Both Kan complexes and nerves of categories satisfy horn extension
properties, but there are two big differences

@ First, for Kan complexes, all horns can be extended, whereas for nerves this
is only the case for inner horns.
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Defining an oco-category

We arrive at the following definition:

Definition
We say that a simplicial set C is an if every inner horn A} — C
can be extended to an n-simplex A" — C.

@ Both Kan complexes and nerves of categories satisfy horn extension
properties, but there are two big differences

@ First, for Kan complexes, all horns can be extended, whereas for nerves this
is only the case for inner horns.

@ For Kan complexes, the mere existence of such and extension is required,
whereas for nerves this extension must be unique. For our definition of
oo-categories, mere existence is all that is necessary, since we would like all
the choices of compositions that exist to be "homotopically irrelavent”,
similar to concatinating paths in a space X.
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| give some simple examples of oco-categories now:
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Examples of oo-categories

| give some simple examples of co-categories now:

@ Any Kan complex will be an oo-category. Therefore for any space X,
it's singular complex Sing(X) is an oo-category. This is one
description of the fundamental co-groupoid as said before.
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Examples of oo-categories

| give some simple examples of co-categories now:

@ Any Kan complex will be an oo-category. Therefore for any space X,
it's singular complex Sing(X) is an oo-category. This is one
description of the fundamental co-groupoid as said before.

@ One thing one can say is that all categories should be co-categories
too, since all higher morphisms can be given by the identity. While
this is in some sense "cheating”, it is not wrong. The nerve makes
this idea precise- identifying a category C to its nerve N(C), allows us
to studying categories as a special case of higher category theory.
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C is an co-category:

@ The objects of C are given by the vertices xp € Cg
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C is an co-category:

@ The objects of C are given by the vertices xy € Cy
@ The 1-simplices f € C; are morphisms
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C is an oco-category:

@ The objects of C are given by the vertices xg € Cg

@ The l-simplices f € C; are morphisms
°

e The face map s = dy : C; — Cq is called the source map
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C is an oco-category:

@ The objects of C are given by the vertices xy € Cg

@ The 1-simplices f € C; are morphisms
@ o Theface map s = d; : C; — Cq is called the source map
e The map dp : C; — Cy is called the target map.
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Morphisms in co-categories

C is an co-category:
@ The objects of C are given by the vertices xp € Cg
@ The 1-simplices f € C; are morphisms
° e The face map s = d; : C;1 — Cy is called the source map
e The map dy : C; — Cp is called the target map.

e As is normal category theory, we write f : x — y if s(f) = x and
t(f) = y. To be extremely precise, we write home(x,y) as the pullback
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Morphisms in co-categories

C is an co-category:
@ The objects of C are given by the vertices xy € Cy

@ The 1-simplices f € C; are morphisms

° e The face map s = dy : C; — Cp is called the source map
e The map dy : C; — Cp is called the target map.
e As is normal category theory, we write f : x — y if s(f) = x and
t(f) = y. To be extremely precise, we write home(x, y) as the pullback

home(x,y) —— C4

® We write sp : Cg — Cy, x — idy = sp(x) for the identity map
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@ We write do = (dyo, ..., d,o) for the boundary of an n-simplex
We say that two morphisms f, g : x — y are homotopic if there is a two
simplex o : A% — C with boundary do = (g, f, idy); so the boundary looks
like:

X

<N
f

X ——— Y
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<

DA




where x,y € C.

In an oco-category C, homotopy is an equivalence relation on home(x,y)
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where x,y € C

In an oco-category C, homotopy is an equivalence relation on home(x,y)
First we show that f ~ f. Consider an edge f : Al — C. Then there are 2-simplices &, o’ such that d®(c’) and d?(o’) are
degenerate
0—F——2 0—F——2

Note that dl(a) = d?(c) = f and d°(¢’) = d*(0’) = f and so

L) =0

sS(fl=o’ = Fof

DA




Let o : f ~ g be a homotopy and by the previous part of the proof there is a homotopy hf : f =~ f, so we have:

8
=
d3
f
hf 1
/ o
® G

One can see that & = dj : g =~ f is our desired homotopy.
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o:f~gwitho' : g~ h, we get:

Observe that symmetry in this case is just a special case of the proof of transitivity; replacing hs : f ~ f with o : f >~ g and

DA




Compositions of Morphisms

Definition
Let f: x — y and g : y — z be morphisms in an arbitrary co-category C.
Then, to compose these two morphisms to form an inner horn in C

A= (g, o, f): N =C

such that dgA = g and dbA = f. Any such horn can be non-uniquely
extended to a 2-simplex o : A2 — C. The new face of o, di(c) is called a
candidate composition of g and f.

Gregor Sanfey Introduction to co-Categories March 2021 65 /100



Compositions of Morphisms

Definition
Let f : x — y and g : y — z be morphisms in an arbitrary oo-category C.
Then, to compose these two morphisms to form an inner horn in C

A=(g,0,f): N2 =C
such that dgA = g and dbA = f. Any such horn can be non-uniquely

extended to a 2-simplex o : A2 — C. The new face of o, di(o) is called a
candidate composition of g and f.

1
0 -Gy 2
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o Clearly this is very different from normal category theory, because we
don’t require our candidate composition to be unique.
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o Clearly this is very different from normal category theory, because we

don’t require our candidate composition to be unique.
theoretic sense.

@ To re-emphasise, we only require in higher category theory that all of
these candidate compositions are weakly equivalent in the homotopy
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Some Notes About This

o Clearly this is very different from normal category theory, because we
don't require our candidate composition to be unique.

@ To re-emphasise, we only require in higher category theory that all of
these candidate compositions are weakly equivalent in the homotopy
theoretic sense.

@ We shall now form the homotopy category Ho(C) of an oco-category,
and show that it is well defined.
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@ Now that we have a well defined homotopy relation, we may form the
homotopy classes.

homotopy category Ho(C) of an co-category by passing everything to
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The Homotopy Category of an oo-category

@ Now that we have a well defined homotopy relation, we may form the
homotopy category Ho(C) of an oo-category by passing everything to
homotopy classes.

@ Various things must be verified in order to show that Ho(C) is well
defined, but the main one is to show that every candidate
composition of two morphisms are indeed homotopic.
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Given two morphisms f : x — y and g : y — z with two 2-simplices
both candidate compositions of f and g, h ~ h'.

o,0' : A2 — C along with h = di(c) and h' = di(0’). Seeing that h, h' are
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which is pictured with the solid arrows to a 3-simplex 7 : A3 pictured

Consider the diagram, where the extension property of co-categories guarantees that we may extend the horn X : /\% — C

Clearly, dy(7) : h =~ h’ is a homotopy.
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The Definition of the Homotopy Category

Definition
Let C be an oo-category. Then there is an ordinary category Ho(C), called
the of C, with:
e Ob(Ho(C)) = Ob(C)
@ Morphisms are given by homotopy classes of maps in C. The
composition and identites respectively are:

o [g]o[f] =[g o f], where g of is an arbitrary candidate composition.
o id, = [idx] = [s0(x)]
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Now we are finally in a position to make our original plan precise!
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Now we are finally in a position to make our original plan precise!
@ Our first principle which we want is that:
e A composition of f and g exists

e Any two choices of compositions are homotopic; the space of such
compositions has trivial 7.

e The homotopies that compare the two choices are also homotopic
(trivial 7q)
e And so forth (trivial 7;, i > 2)
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Frame Title

Now we are finally in a position to make our original plan precise!
@ Our first principle which we want is that:
e A composition of f and g exists
e Any two choices of compositions are homotopic; the space of such
compositions has trivial 7.
e The homotopies that compare the two choices are also homotopic

(trivial 1)
e And so forth (trivial 7;, i > 2)
@ We want morphisms of higher dimensions. If {i,...,ix} € A" are
vertices, then we may denote by Alo:ik} the k-simplex of A" spanned by
the vertices {ip,. .., ik} then:

e An n-morphism from x — y is given by a map of simplicial sets
7 A™1 — C such that 7|a0....y = X and T|pm1y = y
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following theorem of Joyal:

To convince ourselves that we have done the first part, consider the

A simplicial set X is an oo-category iff the restriction map
i* : Map(A2, X) — Map(A2, X)
is an acylic Kan fibration.
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Let us now unpack this theorem a bit:
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Let us now unpack this theorem a bit:

composition problems.

problems, whereas Map(A?, X) is the space of all solutions to the
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Let us now unpack this theorem a bit:

composition problems.

o We may think of Map(A2, X) as the space of all composition
problems, whereas Map(A?, X) is the space of all solutions to the

@ What the theorem tells us is that the defining feature of an

oo-category is that these two spaces are homotopically equivalent.
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Making the Plan Precise

Let us now unpack this theorem a bit:

e We may think of Map(A2, X) as the space of all
, whereas Map(A?, X) is the space of all

@ What the theorem tells us is that the defining feature of an
oo-category is that these two spaces are

@ Moreover, if we have two morphisms f : x — y and g : y — z which
are composible in an co-category C, then we can form the associated
horn

A= (g,—,f):N2=C

which is just a vertex A® — Map(A2,C). Then the fiber F) of i* over
the vertex, which may be thought of as the space of all possible
compositions of g and f which, by the theorem is a

, which tells us the information we wanted in the first
condition.
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Now, we may just say composition instead of " candidate composition”
We can now deal with equivalences in an oo-category C:

isomorphism in Ho(C)

A morphism f : x — y in C is an equivalence if [f] : x — y is an
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Recall the homotopy hypothesis in the introduction which says that
oo-groupoid:

oo-groupoids should come from spaces. First, we need a definition of an

An oo-category is an oco-groupoid if the homotopy category is a groupoid. '
«O> (Fr «E»r < > Q>
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Back to Groupoids and the Homotopy Hypothesis...

Recall the homotopy hypothesis in the introduction which says that
oo-groupoids should come from spaces. First, we need a definition of an

oo-groupoid:
Definition
An oo-category is an oo-groupoid if the homotopy category is a groupoid.

@ The following result of Joyal says that all horns can be extended for an

oo-category as soon as certain maps are equivalences:
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Back to Groupoids and the Homotopy Hypothesis...

Recall the homotopy hypothesis in the introduction which says that
oo-groupoids should come from spaces. First, we need a definition of an
oo-groupoid:

Definition J

An oo-category is an oo-groupoid if the homotopy category is a groupoid.

@ The following result of Joyal says that all horns can be extended for an
oo-category as soon as certain maps are equivalences:

Theorem

Let C be an co-category. Any horn X : A — C,n > 2 such that A 501
can be extended to a simplex A" — C. A similar statement can be given
for N\,
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hypothesis:

We have a corollary now which corresponds perfectly with the homotopy

An oo-category is an co-groupoid iff it is a Kan complex '
Therefore, we can refine our original diagram of faithful functors to be:

Grpd —— Cat
|

N
i \
Kan=Grpdowy —— Cat,e, —— sSet

«4O> «Fr «=>»
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(00, 1)-category.

@ In the next slides, | shall give a very rough overview of the types of
things which one can do, having a precise model of the
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On Constructions on oco-categories

@ In the next slides, | shall give a very rough overview of the types of
things which one can do, having a precise model of the
(00, 1)-category.

@ The most natural thing to talk about are 1-categorical constructions
on oo-categories.
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On Constructions on oco-categories

@ In the next slides, | shall give a very rough overview of the types of
things which one can do, having a precise model of the
(00, 1)-category.

@ The most natural thing to talk about are 1-categorical constructions
on oo-categories.

@ These have been studied ,of course, and now we may speak
comfortably about (co)limits in co-categories
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On Constructions on oco-categories

@ In the next slides, | shall give a very rough overview of the types of
things which one can do, having a precise model of the
(00, 1)-category.

@ The most natural thing to talk about are 1-categorical constructions
on oo-categories.

@ These have been studied ,of course, and now we may speak
comfortably about (co)limits in co-categories. These are an important
topic in 1-category theory, so it is natural to study them in an
oo-categorical setting too.
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@ One of the main objects in higher algebra are called E-rings.
up to coherent homotopy.

Roughly, what they are are a space X which satisfy the ring axioms
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Overview of Higher Algebra

@ One of the main objects in higher algebra are called E..-rings.
Roughly, what they are are a space X which satisfy the ring axioms
up to

@ [E.-rings can be thought of as playing the same role in stable
homotopy theory as commutative rings do in algebra.
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Overview of Higher Algebra

@ One of the main objects in higher algebra are called E..-rings.
Roughly, what they are are a space X which satisfy the ring axioms
up to

@ E..-rings can be thought of as playing the same role in stable
homotopy theory as commutative rings do in algebra.

@ The collection of all can be arranged into an oco-category,
which can be thought of as the co-categorical version of abelian
groups. The tensor product on abelian groups has the analogue of the
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Overview of Higher Algebra

@ One of the main objects in higher algebra are called E.-rings.
Roughly, what they are are a space X which satisfy the ring axioms
up to

@ E..-rings can be thought of as playing the same role in stable
homotopy theory as commutative rings do in algebra.

@ The collection of all can be arranged into an co-category,
which can be thought of as the oco-categorical version of abelian
groups. The tensor product on abelian groups has the analogue of the

@ One may, for example, introduce the notion of a stable co-category,
which is essentially an axiomisation of the essential principle in stable
homotopy theory which is that

. Furthermore, the co-category of spectra are an example
of an co-category.
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@ Goodwillie calculus is a categorification of Newton and Leibniz’

differential calculus, used to study functors that arise in topology

«O>» «F>r «=r «=>» = A



Overview of Goodwillie Calculus

@ Goodwillie calculus is a categorification of Newton and Leibniz’
differential calculus, used to study functors that arise in topology

@ The theory starts with the categorification of polynomial functions,
called n-excisive functors, P,F. Goodwillie established that every
homotopy functor F has a universal approximation by these functors.
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Overview of Goodwillie Calculus

@ Goodwillie calculus is a categorification of Newton and Leibniz’
differential calculus, used to study functors that arise in topology

@ The theory starts with the categorification of polynomial functions,
called n-excisive functors, P,F. Goodwillie established that every
homotopy functor F has a universal approximation by these functors.

@ For example, it turns out that
(roughly). Consider F = I, the identity

functor on the category of based spaces. In the Goodwillie calculus,
this functor is highly nontrivial; P1/(X) = Q*°X>°X. It represents

in the sense that 7, (P1/(X)) = w3 (X). As
you climb higher up the tower P,/(X), it will interlope between stable
and unstable homotopy theory, satisfying various higher versions of
the excision axiom.
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Thank you for watching!
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